UNIT-2
 PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION:

2.1 Introduction:

A beam experiences flexural stresses and shear stresses. It deforms and cracks are developed. ARC beam should have perfect bond between concrete and steel for composites action. It is primarily designed as flexural member and then checked for other parameters like shear, bond, deflection etc. In reinforced concrete beams, in addition to the effects of shrinkage, creep and loading history, cracks developed in tension zone effects its behavior. Elastic design method (WSM) do not give a clear indication of their potential strengths. Several investigators have published behavior of RC members at ultimate load. Ultimate strength design for beams was introduced into both the American and British code in 1950's. The Indian code ES456 introduced the ultimate state method of design in 1964. Considering both probability concept and ultimate load called as "Limit state method of design" was introduced in Indian code from 1978.

2.2 Behavior of Reinforced concrete beam

To understand the behavior of beam under transverse loading, a simply supported beam subjected to two point loading as shown in Fig. 2.1 is considered. This beam is of rectangular cross-section and reinforced at bottom.

When the load is gradually increased from zero to the ultimate load value, several stages of behavior can be observed. At low loads where maximum tensile stress is less than modulus of rupture of concrete, the entire concrete is effective in resisting both compressive stress and tensile stress. At this stage, due to bonding tensile stress is also induced in steel bars.

With increase in load, the tensile strength of concrete exceeds the modulus of rupture of concrete and concrete cracks. Cracks propagate quickly upward with increase in loading up ;to neutral axis. Strain and stress distribution across the depth is shown in Fig 4.1c. Width of crack is small. Tensile stresses developed are absorbed by steel bars. Stress and strain are proportional till $\mathrm{fc}<\frac{f c n}{2}$. Further increase in load, increases strain and stress in the section and are no longer proportional. The distribution of stress - strain curve of concrete. Fig 41d shows the stress distribution at ultimate load.

Failure of beam depends on the amount of steel present in tension side. When moderate amount of steel is present, stress in steel reaches its yielding value and stretches a large amount whth tension crack in concrete widens. Cracks in concrete propagate upward with increases in deflection of beam. This induces crushing of concrete in compression zone and called as "secondary compression failure". This failure is gradual and is preceded by visible signs of distress. Such sections are called "under reinforced" sections.

When the amount of steel bar is large or very high strength steel is used, compressive stress in concrete reaches its ultimate value before steel yields. Concrete fails by crushing and failure is sudden. This failure is almost explosive and occur without warning. Such reactions are called "over reinforced section"

If the amount of steel bar is such that compressive stress in concrete and tensile stress in steel reaches their ultimate value simultaneously, then such reactions are called "Balanced Section".

The beams are generally reinforced in the tension zone. Such beams are termed as "singly reinforced" section. Some times rebars are also provided in compression zone in addition to tension rebars to enhance the resistance capacity, then such sections are called "Doubly reinforce section.

2.3 Assumptions

Following assumptions are made in analysis of members under flexure in limit state method

1. Plane sections normal to axis remain plane after bending. This implies that strain is proportional to the distance from neutral axis.
2. Maximum strain in concrete of compression zone at failure is 0.0035 in bending.
3. Tensile strength of concrete is ignored.
4. The stress-strain curve for the concrete in compression may be assumed to be rectangle, trapezium, parabola or any other shape which results in prediction of strength in substantial agreement with test results. Design curve given in IS456-2000 is shown in Fig. 2.2

Fig 2.2 Stress-Strain Curve for Concrete
5. Stress - strain curve for steel bar with definite yield print and for cold worked deformed bars is shown in Fig 2.3 and Fig 2.4 respectively.

Fig 2.3 stress-strain curve for steel bar with defective yield point

Fig 2.4 stress-strain curve for cold worked deformed bars
6. To ensure ductility, maximum strain in tension reinforcement shall not be less than $\frac{f y}{1.15 E s}+0.002$.
7. Perfect bond between concrete and steel exists.

2.4. Analysis of singly reinforced rectangular sections

Consider a rectangular section of dimension $b \times h$ reinforced with $A_{\text {st }}$ amount of steel on tension side with effective cover Ce from tension extreme fiber to C.G of steel. Then effective depth $\mathrm{d}=\mathrm{h}-\mathrm{ce}$, measured from extreme compression fiber to C.G of steel strain and stress distribution across the section is shown in Fig.2.4. The stress distribution is called stress block.

Fig 2.5 Stress Block

From similar triangle properly applied to strain diagram

$$
\begin{gathered}
\frac{\varepsilon c u}{x u}=\frac{\varepsilon s}{d-x u} \rightarrow(1) \\
\in s=\in c u \times \frac{d-x u}{x u} \rightarrow(2)
\end{gathered}
$$

For the known value of $x 4 \& 6 c u$ the strain in steel is used to get the value of stress in steel from stress-strain diagram. Equation 4.4-1 can be used to get the value of neutral axis depth as

$$
x u=\frac{\epsilon c u}{\epsilon s} \times(d-x u)=\frac{\epsilon c u}{\in s} \times d-\frac{\epsilon c u}{\in s} \times x u
$$

$$
\begin{aligned}
& x u\left(1+\frac{\epsilon c u}{\epsilon s}\right)=\frac{\epsilon c u}{\epsilon s} \times d \\
& x u\left(\frac{\epsilon s+\in c u}{\epsilon s}\right)=\frac{\epsilon c u}{\epsilon s} \times d \\
& \therefore x u=\frac{\epsilon c u}{\epsilon c u+\in s} \times d-(3)
\end{aligned}
$$

Here $\frac{\epsilon c u}{\epsilon c u+\epsilon s}$ is called neutral axis factor
For equilibrium $\mathrm{Cu}=\mathrm{Tu}$.
$\mathrm{K}_{1}, \mathrm{k}_{3} \mathrm{f}_{\mathrm{cu}} \mathrm{bx}_{\mathrm{u}}=\mathrm{f}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}$
$\therefore f s=\frac{K 1, k 3 f c u b x u}{A s}=\frac{k 1 k 3 f c u b}{A s} \times \frac{\in c u}{\in c u+\in s} \times d$ $f s=k 1 k 3 f c u \times \frac{E c u}{E c u+E s} \times \frac{b d}{A s}$ Let $p=$ steel raio $=\frac{A s}{b d}$
$\therefore f s=\frac{k 1 k 3 f c u}{p} \times \frac{E c u}{E c n+E s}$ or $\frac{E c u}{E c u+E s}=\frac{f s p}{k 1 k 3 f c u}-$
Value of fs can be graphically computed for a given value of P as shown in Fig2.6

After getting fs graphically, the ultimate moment or ultimate moment of resistance is calculated as
$\mathrm{Mu}=\mathrm{T}_{\mathrm{u}} \times \mathrm{Z}=\mathrm{f}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}\left(\mathrm{d}-\mathrm{k}_{2} \mathrm{xu}\right)$
$\mathrm{Mu}=\mathrm{Cu} \times \mathrm{Z}=\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{f}_{\mathrm{cu}} \mathrm{b} \mathrm{x}_{\mathrm{u}} \times\left(\mathrm{d}-\mathrm{k}_{2} \mathrm{xu}\right)$
Consider
$\mathrm{Mu}=\mathrm{f}_{\mathrm{s}} \mathrm{A}_{s}\left(\mathrm{~d}-\mathrm{k} 2 \times \frac{\epsilon c u}{\epsilon c u+\epsilon s} d\right)=\mathrm{fs} \operatorname{Asd}\left(1-\mathrm{kz} \frac{\epsilon c u}{\epsilon c u+\epsilon s}\right)$
From (4) $\frac{E c u}{E c u+E s}=\frac{\mathrm{f}_{\mathrm{s}} p}{k 1 k 3 f c m}$
$\therefore M u=f s A s d\left(1-\frac{k 2 f s p}{k 1 k 3 f c u}\right)-(5)$
Here the term $1-\frac{k 2 f s p}{k 1 k 3 f c u}$ is called lever arm factor
Using As=pbd in (5), the ultimate moment of resistance is computed as

$$
M u=f s(p b d) d\left(1-\frac{k 2 f s p}{k 1 k 3 f c u}\right) L e t \quad R=\left(1-\frac{f s p}{f c u} \times \frac{k 2}{k 1 k 3}\right)
$$

$\frac{M u}{b d^{2}}=p f s x \quad$ Dividing both sides by fcu we get or

$$
\frac{M u}{b d^{2}}=p \times \frac{f s}{f c u} \times R-(6)
$$

A graph plotted between $\frac{M u}{f c u b d^{2}}$ as shown in fig 2.7 and can be used for design

Fig 2.7

2.5 Stress Blocks

Stress blocks adopted by different codes are based on the stress blocks proposed by different investigators. Among them that proposed by Hog nested and Whitney equivalent rectangular block are used by most of the codes.

2.5.1 Stress block of IS456-2000

Fig 2.8

Stress block of IS456-2000 is shown in Fig 2.8. Code recommends ultimate strain $\varepsilon_{\mathrm{cu}}=0.0035$ \& strain at which the stress reaches design strength $\varepsilon_{0}=0.002$. Using similar triangle properties on strain diagram

$$
\begin{aligned}
& \quad \frac{0.0035}{x u}=\frac{0.002}{x 1} \\
& \therefore x_{1}=0.57 x u \rightarrow(7) \\
& \text { and } \mathrm{x}_{2}=\mathrm{x}_{\mathrm{u}}-0.57 \mathrm{x}_{\mathrm{u}}=0.43 \mathrm{x}_{\mathrm{u}}
\end{aligned}
$$

Area of stress block is $A=A_{1}+A_{2}$.

$$
\begin{aligned}
A & =\frac{2}{3} \times 0.45 f c k * 0.57 x u+0.45 f c k \times 0.43 x u \\
& =0.171 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}}+0.1935 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} . \\
\mathrm{A} & =0.3645 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} \rightarrow \text { (8) }
\end{aligned}
$$

Depth of neutral axis of stress block is obtained by taking moment of areas about extreme compression fiber.
$\therefore \bar{x}=\frac{\sum a i x i}{\sum a i}$

$$
\begin{gathered}
\bar{x}=\frac{0.171 f c k x u\left(\frac{3}{8} \times 0.57 x u+0.43 x u\right)+0.1935 f c k x u \times \frac{0.43 x u}{2}}{0.36 f c k x u} \\
\bar{x}=0.42 x u-(9)
\end{gathered}
$$

The stress block parameters thus are
$\mathrm{K}_{1}=0.45$
$\mathrm{K}_{2}=0.42$
$\mathrm{K}_{3}=\frac{0.3645}{0.45}=0.81$

4.5.5 Analysis of rectangular beam using IS456-2000 stress block

Case 1: Balanced section

Fig 2.9

Balanced section is considered when the ultimate strain in concrete and in steel are reached simultaneously before collapse.

For equilibrium $\mathrm{Cu}=\mathrm{Tu}$
$\therefore 0.36 f_{c k} \mathrm{x}_{\mathrm{umax}} \mathrm{b}=0.87 \mathrm{f}_{\mathrm{y}}$ Ast $_{\text {max }}$.

$$
\left.\begin{array}{l}
\mathrm{x}_{\mathrm{umax}}=\frac{0.87 f y}{0.36 f c k} \frac{A s t_{\max }}{b} \text { dividing both sides by } \\
\frac{x u \max }{d}=\frac{0.87 f y}{0.36 f c k} \frac{\text { Astmax }}{b d} \text { but } \frac{\text { Ast max }}{b d}=\mathrm{pt}_{\text {masc. }} . \\
\therefore p t_{\max }=\left(\frac{x u \max }{d}\right) \times \frac{0.36 f c k}{0.87 f y} \\
p t_{\max }=\frac{x u \max }{d} \times 0.414 \frac{f c k}{f u}- \tag{11}
\end{array}\right\} \text { (11) }
$$

From strain diagram

$$
\begin{gather*}
\frac{0.0035}{x u m a c}=\frac{0.002+\frac{0.87 f y}{E s}}{x u m a x-d} \\
\frac{\text { xumax }}{d}=\frac{0.0035}{\frac{0.87 f y}{E s}+0.0055}-(\tag{12}
\end{gather*}
$$

Values of $\frac{x u m a x}{d}$ is obtained from equation (12). This value depends on grade of steel. Based on grade of steel this value is given in note of clause 38.1 as (pp70)

$$
\begin{array}{rc}
\text { Fy } & \text { Xumax/d } \\
250 & 0.53 \\
415 & 0.48 \\
500 & 0.46(0.456)
\end{array}
$$

$p_{\text {tmax }}$ given in equation (11) is called limiting percentage steel and denoted as pt lim.
To find moment of resistance, the internal moment of $\mathrm{Cu} \& \mathrm{Tu}$ is computed as

Mulim $=$ Cu x Z $=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{ulim}} \mathrm{b}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{ulim}}\right)$
From equation (11) $\frac{\text { xumax }}{d}=2.42 \frac{f y}{f c k} \mathrm{p}_{\text {tmax }}$
Mulim = Tu x Z = 0.87fyAst [d-0.42xulim]
Mulim $=0.87$ fyAst[d $\left.-0.42 \times 2.42 \frac{f y}{f c k} p t_{\text {max }} d\right]$

$$
=0.87 \text { fyAst }\left[1-\frac{f y}{f c k} p t m a x\right]
$$

$$
\frac{\text { Mulim }}{f c k b d^{2}}=0.87 \frac{f y}{f c k} \frac{\text { Ast }}{b d}\left(1-\frac{f y}{f c k} \text { ptlim }\right)
$$

$$
\begin{equation*}
\frac{M u l i m}{f c k b d^{2}}=0.87 \frac{f y}{f c k} \text { ptlim }\left(1-\frac{f y}{f c k} \text { ptlim }\right)- \tag{13}
\end{equation*}
$$

From equation 4.5-5-2 ptlim can be expressed as

$$
\frac{\text { ptlimfy }}{f c k}=0.414 \frac{x u m a x}{d} \rightarrow(14)
$$

Values of $\frac{\text { mulim }}{f c k b d_{2}} \& \frac{p t l i m f y}{f c k}$

For different grade of Steel is given in Table (page 10 of SP -16. This table is reproduced in table 2.1.

Table 2.1 Limiting Moment resistance \& limiting steel

Fy	250	415	500
$\frac{\text { mulim }^{f c k b d_{2}}}{}$	0.149	0.138	0.133
$\frac{\text { ptlim } f y}{f c k}$	21.97	19.82	18.87

Where $\mathrm{p}_{\text {tlim }}$ is in\%

Now considering $\mathrm{M}_{\mathrm{ulim}}=\mathrm{C}_{\mathrm{u}} \times \mathrm{Z}$.
Mulim $=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{X}_{\mathrm{ulim}} \mathrm{b} \times\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{ulim}}\right)$

$$
\frac{\text { Mulim }}{f c k b d^{2}}=0.36 \times \frac{\text { xulim }}{d}\left[1-0.42 \frac{\text { xulim }}{d}\right]-15
$$

Value of $\frac{\text { Mulim }}{f c k b d_{2}}$ is abailalbe in table C of SP16 \& Value of $\frac{\text { Mulim }}{b d_{2}}$ for different grade of concrete and steel is given in Tables. Value of pt lim for different grade of concrete and steel is given in table E of SP -'6'. Term $\frac{\text { Mulim }}{b d_{2}}$ is termed as limiting moment of resistance factor and denoted as Qlim
\therefore Mulim $=\mathrm{Q}_{\text {lim }} \mathrm{bd}^{2}$.

Case 2: Under reinforced section

In under reinforced section, the tensile strain in steel attains its limiting value first and at this stage the strain in extreme compressive fiber of concern is less than limiting strain as shown in Fig 2.10

Fig 2.10

The neutral axis depth is obtained from equilibrium condition $\mathrm{Cu}=\mathrm{Tu}$
$\therefore 0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{ub}}=0.87 \mathrm{fy} A \mathrm{st}$
$\mathrm{xu}=\frac{0.87 f y A s t}{0.36 f c k b}=2.41 \frac{f y}{f c k} \frac{\text { Ast }}{b}$
or $\frac{x u}{d}=2.41 \frac{f y}{f c k} \frac{A s t}{b d}-$
Moment of resistance is calculated considering ultimate tensile strength of steel $\therefore M_{u R}=T_{u} \times Z$ or $\mathrm{M}_{\mathrm{ur}}=0.87$ fy Ast X (d-0.42xu)

$$
\begin{aligned}
& =0.87 \mathrm{ftAst} \mathrm{~d}\left(1-0.42 \frac{x u}{d}\right) \\
& =0.87 \mathrm{fy} \text { Ast d }\left(1-0.42 \times 2.41 \frac{f y}{f c k} \frac{\text { Ast }}{b d}\right)
\end{aligned}
$$

Considering $\mathrm{p}_{\mathrm{t}}=100 \frac{\text { Ast }}{b d}$ expressed as \% we get
$\mathrm{M}_{\mathrm{uR}}=0.87$ fyAst $\mathrm{d}\left(1-1.0122 \frac{f y}{f c k}\left(\frac{p t}{100}\right)\right)$
Or $\frac{M u R}{0.87 f y b d^{2}}=\frac{A s t}{b d}\left(1-1.0122 \frac{f y}{f c k}\left(\frac{p t}{100}\right)\right.$, taking 1.0122 ≈ 1

$$
\frac{M u R}{0.87 f y b d^{2}}=\left(\frac{p t}{100}\right)-\frac{f y}{f c k}\left(\frac{p t}{100}\right)^{2}
$$

$\operatorname{Or} \frac{f y}{f c k}\left(\frac{p t}{100}\right)^{2}-\frac{p t}{100}+\frac{M u R}{0.87 f y b d^{2}}=0-(17)$
Equation (17) is quadratic equation in terms of (pt/100)
Solving for $p t$, the value of $p t$ can be obtained as
$P_{\mathrm{t}}=50\left[\frac{1-\sqrt{1-\frac{4.6 M u R}{f c k b d^{2}}}}{f y / f c k}\right]$
$\mathrm{Pt}=50 \frac{f c k}{f y}\left[1-\sqrt{1-\frac{4.6 M u R}{f c k b d^{2}}}\right]-$

Let $\mathrm{Ru}=\frac{4.6 M u R}{f c k b d^{2}}$ then
$\mathrm{Pt}=50 \frac{f c k}{f y}\left[1-\sqrt{1-R_{\mathrm{u}}}\right]$

Case 3: Over reinforced section

In over reinforced section, strain in extreme concrete fiber reaches its ultimate value. Such section fail suddenly hence code does not recommend to design over reinforced section.

Depth of neutral axis is computed using equation 4.5-6. Moment of resistance is calculated using concrete strength.
$\therefore \mathrm{M}_{\mathrm{uR}}=\mathrm{CuxZ}$
$=0.36$ fck xub $(\mathrm{d}-0.42 \mathrm{xu})-19$
$\frac{x u}{d}>\frac{x u l i m}{d}$
Position of neutral axis of 3 cases is compared in Fig. 2.11

Fig 2.11

Worked Examples

1. Determine MR of a rectangular section reinforced with a steel of area $600 \mathrm{~mm}^{2}$ on the tension side. The width of the beam is 200 mm , effective depth 600 mm . The grade of concrete is M 20 \& Fe 250 grade steel is used.
Solve: $f_{\text {ck }}=20 \mathrm{Mpa} \mathrm{fy}=250 \mathrm{Mpa}, \mathrm{A}_{\text {st }}=600 \mathrm{~mm}^{2}$
Step . 1 To find depth of NA
$\frac{x u}{d}=2.41 \frac{f y}{f_{c k}} \frac{A_{s t}}{b d}$
$X_{u}=\left(2.41 \times \frac{250}{250} \times \frac{600}{200 \times 600}\right)^{600}=90.375 \mathrm{~mm}$

Step 2 Classification
From clause 38.1, page 70 of IS456,
For Fe $250 \quad \frac{x_{\text {ulim }}}{d}=0.53, \quad \mathrm{x}_{\text {ulim }}=0.53 \times 600=318 \mathrm{~mm}$
$\mathrm{x}_{\mathrm{u}}<\mathrm{x}_{\mathrm{ulim}}$. Hence the section is under reinforced.

Step . 3 MR for under reinforced section.
$\mathrm{MR}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \quad \frac{N-m m}{1000 \times 1000}$
$=\frac{0.87 \times 250 \times 600(600-0.42 \times 90.375)}{10^{6}}$
$=73.36 \mathrm{kN}-\mathrm{m}$.
2. Determine the MR of a rectangular section of dimension 230 mm X 300 mm with a clear cover of 25 mm to tension reinforcement. The tension reinforcement consists of 3 bars of 20 mm dia bars. Assume M20 grade concrete \& Fe 415 steel.

If cover is not given, refer code $-456 \rightarrow$ page 47
1 inch $=25 \mathrm{~mm} \rightarrow$ normal construction
Effective depth, d=300-(25+10)

$$
=265 \mathrm{~mm} .
$$

$\mathrm{A}_{\mathrm{st}}=3 \frac{\pi}{4} \times 20^{2}=942.48 \mathrm{~mm}^{2}$.
(1) To find the depth of N.A

$$
\begin{aligned}
\mathrm{x}_{\mathrm{u}} & =2.41 \times \frac{f y}{f_{c k}} \times \frac{A_{s t}}{b d} \times d \\
& =2.41 \times \frac{415}{25} \times \frac{603.18}{230}=104.916 \mathrm{~mm}
\end{aligned}
$$

ii) For Fe415, $\frac{x_{\text {ulim }}}{d}=0.48$
$\mathrm{x}_{\text {ulim }}=0.48 \mathrm{X} 442=212.16 \mathrm{~mm}$
$\mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{ulim}}$
The section is under reinforced.
iii) $\mathrm{M}_{\mathrm{R}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)$ $=0.87$ X 415 X 603.18 (442-0.42X104.916)
$=86.66 \mathrm{kN}-\mathrm{m}$.
3. Find MR of the section with the following details.

Width of section: 230 mm
Overall depth of section: 500 mm
Tensile steel: 3 bars of 16 mm dia
Grade of concrete: M25
Type of steel : Fe 415
Environmental condition: severe
Solve: $\mathrm{b}=230, \mathrm{~h}=500 \mathrm{~mm}, \mathrm{f}_{\mathrm{ck}}=25, \mathrm{f}_{\mathrm{y}}=415$
From table 16(page 47, IS 456-2000)
Min clear cover $(C C)=45 \mathrm{~mm}$
Assume CC 50mm.
Effective depth $=500-(50+8)=442 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{st}}=3 \times \frac{\pi}{4} \times 16^{2}=603.18 \mathrm{~mm}^{2}$
i) To find the depth of N-A, $\mathrm{x}_{\mathrm{u}}=2.41 \frac{415}{20} \times \frac{942.47}{230 \times 230}=204.915 \mathrm{~mm}$
ii) For Fe 415, $\frac{x_{u l i m}}{d}=0.48$
$\mathrm{X}_{\text {ulim }}=0.48 \times 300=144 \mathrm{~mm}$.
$\mathrm{x}_{\mathrm{u}}>\mathrm{x}_{\mathrm{ulim}} \quad \therefore$ over reinforced.
(1) $\mathrm{M}_{\mathrm{R}}=\left(0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} \mathrm{b}\right)\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)$.
$=60.71 \mathrm{kN}-\mathrm{m}$.
4. A R - C beam 250 mm breadth \& 500 mm effective depth is provided with 3 nos. of 20 mm dia bars on the tension side, assuming M20 concrete \& Fe 415 steel, calculate the following:
(i) N-A depth (ii) compressive force (iii) Tensile force (iv) ultimate moment (v) safe concentrated load at mid span over an effective span of 6 m .

Solve: $d=500 \mathrm{~mm}, b=250 \mathrm{~mm}$
$\mathrm{A}_{\text {st }}=3 \times \frac{\pi}{4} \times 20^{2}=942.48 \mathrm{~mm}^{2}$
$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpa} \mathrm{f}_{\mathrm{y}}=415 \mathrm{Mpa}$.

Step - 1
$\frac{x_{u}}{d}=2.41 \times \frac{f y}{f_{c k}} \times \frac{A_{s t}}{b d}$
$=2,41 \times \frac{415}{20} \times \frac{942.48}{250 \times 250} \times 500$
$\mathrm{x}_{\mathrm{u}}=188.52 \mathrm{~mm}$

Step-2: For Fe $415 \frac{x_{\text {ulim }}}{d}=0.48 ; \mathrm{x}_{\text {ulim }}=0.48 \mathrm{X} 500$

$$
=240 \mathrm{~mm}
$$

$\therefore \mathrm{x}_{\mathrm{u}}<\mathrm{x}_{\text {ulim }}$, the section is under reinforced.
$\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} \mathrm{b}=0.36 \mathrm{X} 20 \mathrm{X} 188.52 \times 250 / 10^{3}=339.34 \mathrm{kN}$.

Step - 3 MR for under reinforced section is

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =\mathrm{MR}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \\
& =\frac{0.87 \times 415 \times 942.48(500-0.42 \times 188.52)}{10^{6}} \\
& =143.1 \mathrm{kN}-\mathrm{m} .
\end{aligned}
$$

Step - 4
$\mathrm{M}_{\mathrm{u}}=\frac{w_{u} \times L}{4}=\frac{w_{u} \times 6}{4}$
Equating factored moment to MR
$\frac{W_{u} \times 6}{4}=143.1$
$\mathrm{W}_{\mathrm{u}}=95.5 \mathrm{KN}$.
Safe load, $\mathrm{W}=\frac{W_{u}}{1.5}$ load factor/factor of safety
$=63.67 \mathrm{kN}$

Step . $2 \mathrm{~T}_{\mathrm{u}}=0.87 f_{y} A_{s t}=\frac{0.87 \times 415 \times 942.48}{10^{3}}=340.28 \mathrm{kN}$.

$$
\mathrm{C}_{\mathrm{u}} \approx \mathrm{~T}_{\mathrm{u}} .
$$

5. In the previous problem, determine 2 point load value to be carried in addition to its self weight, take the distance of point load as 1 m .

Solve: Allowable moment, $\frac{M u}{1.5}=\frac{143.1}{1.5}=95.4 \mathrm{KN}-\mathrm{m}$
Considering self weight \& the external load,
M=MD+ML: $\quad \mathrm{MD}=$ dead load moment, $\mathrm{ML}=$ live load moment, $\mathrm{qd}=$ self weight of beam $=$ volume X density: density $=25 \mathrm{kN} / \mathrm{m}^{3}$ for R C C IS 875 -part -1 , plain concrete $=$ $29 \mathrm{kN} / \mathrm{m}^{3}$

Volume $=b$ Xh X 1m
Let $\mathrm{CC}=25 \mathrm{~mm}, \mathrm{Ce}=25+\frac{20}{2}=3$
$\mathrm{H}=500+35=535 \mathrm{~mm}$
$q_{d}=\frac{250 \times 535}{1000^{2}} \times 1 \times 25=3.34 \mathrm{KN} / \mathrm{m}$.
$M_{D}=\frac{q_{d} \times l^{2}}{8}=\frac{3.34 \times 6^{2}}{8}=15.03 \mathrm{KN}-\mathrm{m}$.
$\mathrm{M}=95.4=15.03+\mathrm{ML}$
$\mathrm{ML}=80.37 \mathrm{kN}-\mathrm{m}$

$$
80.37=\mathrm{WLX} 1
$$

$\mathrm{WL}=80.37 \mathrm{kN}$
6. A singly reinforced beam 200 mm X 600 mm is reinforced with 4 bars of 16 mm dia with an effective cover of 50 mm . effective span is 4 m . Assuming M20 concrete \& Fe 215 steel, let the central can load p that can be carried by the beam in addition to its self weight max 5 m $=\frac{W \cdot L}{4}$,

Solve: $A_{\text {st }}=4 \times \frac{\pi}{4} \times 16^{2}=804.25 \mathrm{~mm}^{2}$
$\mathrm{B}=200 \mathrm{~mm}, \mathrm{~d}=550 \mathrm{~mm}, \mathrm{~h}=600 \mathrm{~mm}, \mathrm{fck}=20 \mathrm{Mpa}, \mathrm{fy}=250 \mathrm{Mpa}$.

Step (1) $\frac{x_{u}}{d}=2.41 \frac{f y}{f c k} \frac{A_{s t}}{b d}$
$\mathrm{x}_{\mathrm{u}}=2.41 \times \frac{250}{20} \times \frac{804.25}{200}$
$=121.14 \mathrm{~mm}$

Step (2)
$\frac{x_{\text {ulim }}}{d}$ for Fe 250 us 0.53
$\therefore \mathrm{x}_{\mathrm{u}} \lim =0.53$ X $550=291.5 \mathrm{~mm}$
$\mathrm{x}_{\mathrm{u}}<\mathrm{x}_{\mathrm{u}} \lim . \therefore$ section is under reinforced.

Step - 3
$\mathrm{M}_{\mathrm{u}}=\mathrm{MR}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\left[\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right]$
$\frac{0.87 \times 250 \times 804.25[550-0.42(121.14)]}{10^{6}}$
$\mathrm{M}_{\mathrm{u}}=87.308 \mathrm{kNm}$.
$\mathrm{M}=$ Allowable moment $=\frac{M_{u}}{1.5}=\frac{87.308}{1.5}=58.20 \mathrm{kN}-\mathrm{m}$
$\mathrm{M}=\mathrm{MD}+\mathrm{ML}$
$q_{d}=$ self weight of beam
$q_{d}=$ volume X density
density $=25 \mathrm{kN} / \mathrm{m}^{3}$ for R C C
Volume $=b$ Xh X $2=200 \times 600 \times 2=2,40,000 \mathrm{~m}^{3}$
$\mathrm{q}_{\mathrm{d}}=0.2 \times 0.6 \mathrm{X} 1 \times 25=3 \mathrm{kN} / \mathrm{m}$
$\mathrm{q}_{\mathrm{d}}=\frac{240000 \times 25}{(1000)^{2}}$
$q_{d}=6 K N / m$
$\operatorname{Md}=\frac{q_{d} l^{2}}{8}$
$=\frac{3 \times 4^{2}}{8}$
$\mathrm{Md}=6 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}=58.2=6+\mathrm{ML}$
$\mathrm{ML}=52.2 \mathrm{kN}-\mathrm{m}$
$M L=\frac{p . l}{4}$
$\mathrm{P}=\frac{52.2 \times 4}{4}$
$\mathrm{P}=52.2 \mathrm{kN}$.
7. Determine N-A depth \& MR of a rectangular beam of section 300 mm X 600 mm . The beam is reinforced with 4 bars of 25 mm having an effective cover of 50 mm , assume grade of concrete \& steel as M20 \& Fe 415 respectively

Solve: $\mathrm{b}=300 \mathrm{~mm}, \mathrm{~h}=600 \mathrm{~mm}, \mathrm{~d}=550 \mathrm{~mm}$.
$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpa} \mathrm{fy}=415 \mathrm{Mpa}, \mathrm{A}_{\mathrm{st}}=1963 \mathrm{~mm}^{2}$
Step- 1 Neutral axis depth
$\frac{x_{u}}{d}=2.41 \frac{f y}{f c k} \frac{A_{s t}}{b}=\frac{2.41 \times 415 \times 1963}{20 \times 300}$
$\mathrm{x}_{\mathrm{u}}=327.21 \mathrm{~mm}$
Step - 2 Classification
$\frac{x_{\text {ulim }}}{d}=0.48 \rightarrow \mathrm{x}_{\mathrm{ulim}}=0.48 \mathrm{X} 550=264 \mathrm{~mm}$
$\mathrm{x}_{\mathrm{u}}>\mathrm{x}_{\mathrm{ulim}}$. Hence the section is over - reinforced.

NOTE: Whenever the section is over reinforced, the strain in steel is less than the ultimate strain $\left(0.002+\frac{0.87 f y}{E s}\right)$. Hence actual N_A depth has to be computed, by trial and error concept because in the above equation of x_{u}, we have assumed the stress in steel as yield stress \& this is not true.

Step - 3 Actual N-A depth (which lies $\mathrm{b} / \mathrm{w} \mathrm{x}_{\mathrm{u}}=\underline{327 \mathrm{~mm}} \& \operatorname{xulim}=264 \mathrm{~mm}$)
Trial 1: Let $\mathrm{x}_{\mathrm{u}}=\frac{264+327}{2}=295.5 \mathrm{~mm}$

$$
\begin{aligned}
& \quad \frac{\epsilon c u}{x_{u}}=\frac{\epsilon_{s}}{500-x_{u}} \\
& \epsilon_{s}=\frac{0.0035}{295.5}(500-295.5) \\
& =0.00303
\end{aligned}
$$

For HYSD bar, the stress strain curve is given in the code, however for definite strain values, the stress is given in SP - 16

$$
\frac{360.9-351.8}{0.0038-0.00276}=\frac{y^{1}}{(0.00303-0.002+6)} y^{1}=2.36
$$

$\mathrm{f}_{\mathrm{s}}=351.8+\mathrm{y}^{1}=351.8+2.36=3.54 .16 \mathrm{Mpa}$
Equating compressive force to tensile force,
$\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$
$0.36 \mathrm{fckx}_{\mathrm{u}} \mathrm{b}=\mathrm{f}_{\mathrm{s}} \mathrm{A}_{\mathrm{st}}$
$x_{u}=\frac{354.16 \times 1963}{0.36 \times 20 \times 300}=321.86 \mathrm{~mm}$
Compared to the earlier computation, this value is less than 327 . However to confirm we have to repeat the above procedure till consecutive values are almost same.
$\underline{\text { Trial 2 }}$ Let $\mathrm{x}_{\mathrm{u}}=\frac{295+321.8}{2} \approx 308 \mathrm{~mm} \quad \frac{T-2}{x_{u}}=317.7$
Repeat the computation as in trial 1.
$\frac{\epsilon_{c u}}{x_{u}}=\frac{\epsilon_{u}}{550-x_{u}}$
$\epsilon_{s}=\frac{0.0035}{308}(550-308)$

For HYSD bars, the stress strain curve is given in the code, however for definite strain values, the stress is given in SP-16.

$$
\begin{aligned}
\frac{351.8-342.8}{0.00276-0.00241} & =\frac{y^{1}}{0.00275-0.00241} \\
y^{1} & =8.74 \\
\mathrm{fs}=342.8+8.74= & 351.54 \mathrm{Mpa}
\end{aligned}
$$

Equating compressive forces to tensile forces,
$\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$
$0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{bxu}=\mathrm{f}_{\mathrm{s}} \mathrm{A}_{\mathrm{st}}$
0.36 X 20 X 300 X x $_{\mathrm{u}}=351.54$ X 1963.
$\mathrm{x}_{\mathrm{u}}=319.48 \mathrm{~mm}$
Compared to earlier computation this value is lesser than 321.8 . However to confirm we have to repeat the above procedure till consecutive values are almost same.
$\underline{\text { Trial } 3}$ Let $x_{u}=\frac{308+319.48}{2} \approx 313.74 \mathrm{~mm}$
$\frac{\epsilon_{c u}}{x_{u}}=\frac{\epsilon_{u}}{550-x_{u}}$
$\epsilon_{s}=\frac{0.0035}{313.74}(550-313.74)$
$=0.00263$
For HYSD bars, the stress strain curve is given in the code, however for definite strain values, the stress is given in SP-16.
$f s=\frac{351.8-342.8}{0.00276-0.00241}(0.00263-0.00241)+342.8$
$f s=348.46$
Equating compressive forces to tensile forces,
$\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$
$0.36 f_{\text {ck }} \mathrm{xub}=\mathrm{f}_{\mathrm{s}} \mathrm{A}_{\mathrm{st}}$
0.36 X 20×300 X x $_{u}=348.46$ X 1963.
$\mathrm{x}_{\mathrm{u}}=316.7 \mathrm{~mm}$

Step - 4 MR

Dia (mm)	Area
8	50
10	78.5
12	113
16	201
20	314
25	490

MUR=0.36f $\mathrm{ck}_{\mathrm{ck}} \mathrm{X}_{\mathrm{u}} \mathrm{b}\left(\mathrm{d}-0.92 \mathrm{x}_{\mathrm{u}}\right)$
$=\frac{0.36 \times 20 \times 300 \times 375(550-0.42 \times 315)}{1 \times 10^{6}}$
$=284.2 \mathrm{kN}-\mathrm{m}$

A rectangular beam 20 cm wide $\& 40 \mathrm{~cm}$ deep up to the center of reinforcement. Find the reinforcement required if it has to resist a moment of $40 \mathrm{kN}-\mathrm{m}$. Assume M20 concrete \& Fe 415 steel.

NOTE: When ever the loading value or moment value is not mentioned as factored load, assume then to be working value. (unfactored).

Solve: $\quad b=200 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}, \mathrm{fck}=20 \mathrm{Mpa}, \mathrm{fy}=415 \mathrm{Mpa}$

$$
\begin{aligned}
& \mathrm{M}=40 \mathrm{kN}-\mathrm{m}, \quad \mathrm{M}_{\mathrm{u}}=1.5 \mathrm{X} 40=60 \mathrm{kN}-\mathrm{m}=60 \mathrm{X} 10^{6} \\
& \mathrm{M}_{\mathrm{u}}=\mathrm{MuR}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{X}_{\mathrm{st}} \mathrm{X}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \rightarrow(1
\end{aligned}
$$

$\frac{x_{u}}{d}=2.41 \frac{f y}{f_{c k}} \frac{A_{s t}}{b d}$
$x_{u}=\frac{2.41 \times 415 \times A_{s t}}{20 \times 200}=0.25 A_{s t}$
Substituting in 1.

60 X $10^{6}=0.87$ X 415 X Ast (400-0.42 X 0.25 X Ast)
$60 \times 10^{6}=1,44,420$ Ast-37.91 Ast ${ }^{2}$
Ast $=474.57 \mathrm{~mm}^{2}$ [take lower value \rightarrow under reinforced]

- In beams, dia of reinforcement is taken above 12 .

Provide 2-\#16 \& 1-\#12
(Ast) provided $=2 \times \frac{\pi}{4} \times 16^{2}+2 \times \frac{\pi}{4} \times 12^{2}=515.2 \mathrm{~mm}^{2}>474.57 \mathrm{~mm}^{2}$

Check for type of beam

$$
\begin{aligned}
x_{u} & =2.41 \frac{f y}{f c k} \frac{A_{s t}}{b d} \\
& =2.41 \times \frac{415}{20} \times \frac{515.2}{200}=128.82 \mathrm{~mm}
\end{aligned}
$$

From code, $\mathrm{xumax}=0.48 \mathrm{~d}=192 \mathrm{~mm}: \mathrm{x}_{\mathrm{u}}<\mathrm{x}_{\mathrm{u}} \max$
For M20 \& Fe 415
\therefore Section is under reinforced.
Hence its Ok....
9. A rectangular beam 230 mm wide $\& 600 \mathrm{~mm}$ deep is subjected to a factored moment of 80 kN m . Find the reinforcement required if M20 grade concrete \& Fe 415 steel is used.

Solve: $\mathrm{b}=230 \mathrm{~mm}, \mathrm{~h}=600 \mathrm{~mm}, \mathrm{M}_{\mathrm{u}}=80 \mathrm{kN}-\mathrm{m}, \mathrm{fck}=20 \mathrm{Mpa}, \mathrm{fy}=415 \mathrm{Mpa}, \mathrm{Ce}=50 \mathrm{~mm}$,

$$
=80 \mathrm{X} 10^{6} \mathrm{~N}-\mathrm{mm}
$$

$\mathrm{M}_{\mathrm{u}}=\mathrm{MuR}=0.87$ fy Ast $\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \rightarrow$ (1)
$\frac{x_{u}}{d}=2.41 \frac{f y}{f c k} \frac{A_{s t}}{b d}$
$x_{u}=\frac{2.41 \times 415 A_{s t}}{20 \times 230}=0.217 A_{s t}$

Substituting in (1)
80 X $10^{6}=0.87$ X415XAst (0.42 X 0.217Ast $)$

Procedure for design of beams

1. From basic equations.

Data required: a) Load or moment \& type of support b) grade of concrete \& steel.

Step . 1 If loading is given or working moment is given, calculate factored moment. $\left(\mathrm{M}_{\mathrm{u}}\right)$
$M_{u}=\frac{w l^{2}}{2} \quad M_{u}=\frac{1.5(w d+w l) l^{2}}{8}$

Step - 2 Balanced section parameters
$\mathrm{X}_{\mathrm{ulim}}, \mathrm{Q}_{\mathrm{lim}}, \mathrm{p}_{\mathrm{tlim}},($ table A to E SP 16)

$$
\mathrm{Q}_{\mathrm{lim}}=\frac{M_{u}}{b d^{2}}
$$

Step - 3 Assume b and find

$$
\mathrm{d}_{\lim }=\sqrt{\frac{M_{u}}{Q_{\text {lim }} \times b}}
$$

Round off $\mathrm{d}_{\text {lim }}$ to next integer no.
$h=d+C_{e}: C_{e}=$ effective cover : assume C_{e}.
$\mathrm{Ce}=25 \mathrm{~mm}: \mathrm{Ce}=\mathrm{Cc}+\frac{\emptyset}{2}$

Step - 4 To determine steel.
Find $\mathrm{P}_{\mathrm{t}}=R_{u}=\frac{4.6 M_{u}}{f_{c k} b d^{2}} \quad p_{t}=\frac{100 A_{s t}}{b d}$

Ast $=\frac{p_{t} b d}{100}$: assume suitable diameter of bar \& find out no. of bars required.
$\mathrm{N}=\frac{A s t}{Q_{s t}}:$ ast $=$ area of 1 bar .

Using design aid SP16

Step $1 \&$ Step 2 are same as in the previous case i.e using basic equation
$\underline{\text { Step }-3}$ Find $\frac{M_{u}}{b d^{2}}$ and obtain pt from table 1 to $4 \rightarrow$ page $47-50$
Which depends on grade of concrete.
From pt, calculate Ast as Ast $=\frac{p_{t} \cdot b \cdot d}{100}$
Assuming suitable diameter of the bar, find the no. of re-bar as $\mathrm{N}=\frac{A_{s t}}{Q_{s t}}$
where Qst $=\frac{\pi}{4} \not \emptyset^{2}$

NOTE: 1. To find the overall depth of the beam, use clear cover given in IS 456 - page 47 from durability \& fire resistance criteria.
2. To take care of avoiding spelling of concrete \& unforcy tensile stress, min. steel has to be provided as given in IS 456 - page $47 \frac{A_{s}}{b d}=\frac{0.85}{f y}$

If Ast calculated, either by method 1 or 2 should not be less than (As)min .

$$
\text { If } \quad \text { Ast }<\text { Asmin } \quad: \quad \text { Ast }=\text { Asmin }
$$

1. Design a rectangular beam to resist a moment of $60 \mathrm{kN}-\mathrm{m}$, take concrete grade as M20 \& Fe 415 steel.

Solve: $\mathrm{M}=60 \mathrm{KN}-\mathrm{m}$

$$
\mathrm{M}_{\mathrm{u}}=1.5 \mathrm{X} 60=90 \mathrm{kN}-\mathrm{m} \quad \mathrm{fck}=20 \mathrm{Mpa}, \mathrm{fy}=415 \mathrm{Mpa}
$$

Step 1: Limiting Design constants for M_{20} concrete \& Fe 415 steel.
$\frac{z_{u \max }}{d}=0.48:$ From Table -c of SP-16, page 10
$\mathrm{Q}_{\mathrm{lim}}=2.76$
P_{t} lim $=0.96 \quad$ column sizes 8 inches $=200 \mathrm{~mm}$

$$
9 \text { inches }=230 \mathrm{~mm}
$$

Step-2: $d_{b a l}=\sqrt{\frac{M_{u}}{Q_{l i m} \times b}}$
Let $\mathrm{b}=230 \mathrm{~mm}$
$d_{c o l}=\sqrt{\frac{90 \times 10^{6}}{2.76 \times 230}=376.5 \mathrm{~mm}}$
Referring to table 16 \& 16 A, for moderate exposure \& $11 / 2$ hour fire resistance, let us assume clear cover $\underline{C c=30 \mathrm{~mm}} \&$ also assume 16 mm dia bar \therefore effective cover $\mathrm{Ce}=30+8=38 \mathrm{~mm}$
$\mathrm{h}_{\text {bal }}=376.5+38=414.5$
18 inches $=450 \mathrm{~mm}$

Provide overall depth, $\mathrm{h}=450 \mathrm{~mm}$.
' d ' provided is $450-38=412 \mathrm{~mm}$

Step . 3 Longitudinal steel
Method. $1 \rightarrow$ using fundamental equations
Let p_{t} be the $\%$ of steel required

$$
\begin{aligned}
p_{t} & =\frac{50 f c k}{f y}[1-\sqrt{1-R u}] ; R u=\frac{4.6 M u}{f_{c k} b d^{2}}=\frac{4.6 \times 90 \times 10^{6}}{20 \times 230 \times 412^{2}}=0.53 \\
& =\frac{50 \times 20}{415}[1-\sqrt{1-0.53}] \\
& =0.758
\end{aligned}
$$

Method $.2 \rightarrow$ using SP 16. Table - 2 page -47 use this if it is not Specified in problem
$K=\frac{M_{u}}{b d^{2}}=\frac{90 \times 10^{6}}{230 \times 412^{2}}=2.305$
$\mathrm{K}=2.3 \rightarrow \mathrm{pt}=0.757$
$\mathrm{K}=2.32 \rightarrow \mathrm{pt}=0.765$
For $\mathrm{k}=2.305, \mathrm{pt}=0.757+\frac{(0.765-0.757)}{(2.32-2.3)} \times(2.305-2.3)$
$=0.759$

Step 4 : detailing
Area of steel required, $\mathrm{A}_{\mathrm{st}}=\frac{p_{t} b d}{100}=\frac{0.76 \times 230 \times 412}{100}=720 \mathrm{~mm}^{2}$

- $\quad \mathrm{M} 20 \rightarrow$ combination $12 \mathrm{~mm} \& 20 \mathrm{~mm}$ aggregate (As) size.
- Provide 2 bars of $20 \mathrm{~mm} \& 1$ bar of 12 mm ,
- \therefore Ast provided $=2 \mathrm{X}^{3} / 4+113$

$$
=741>720 \mathrm{~mm}^{2}
$$

[To allow the concrete flow in b / w the bars, spacer bar is provided]
1.Design a rectangular beam to support live load of $8 \mathrm{kN} / \mathrm{m} \&$ dead load in addition to its self weight as $20 \mathrm{kN} / \mathrm{m}$. The beam is simply supported over a span of 5 m . Adopt M25 concrete \& Fe 500 steel. Sketch the details of c / s of the beam.

Solve: $\mathrm{q}_{\mathrm{L}}=8 \mathrm{kN} / \mathrm{mb}=230 \mathrm{~mm} q_{d}^{1}=20 \mathrm{kN} / \mathrm{m} \mathrm{f}_{\mathrm{ck}}=25 \mathrm{Mpa}$ fy $=500 \mathrm{Mpa} . \mathrm{l}=5 \mathrm{~m}=5000 \mathrm{~mm}$
Step .1: c/s
NOTE; The depth of the beam is generally assumed to start with based on deflection criteria of serviceability. For this IS 456-2000 - page 37, clause 23.2-1 gives $\frac{l}{d}=20$
with some correction factors. However for safe design generally $1 / d$ is taken as 12
$\frac{l}{12}=d \quad d=\frac{5000}{12}=416 \mathrm{~mm} .($ no decimal $)$
Let $\underline{\mathrm{Ce}=50 \mathrm{~mm}}, \mathrm{~h}=416+50=466 \mathrm{~mm}$

Step 2 Load calculation

i) Self weight $=0.23 \times 0.5 \times 1 \times 25=2.875 \mathrm{kN} / \mathrm{m}=q_{d}^{11}$
ii) dead load given $q_{d}^{1}=20 \mathrm{kN}$
$\mathrm{qd}=q_{d}^{1}+q_{d}^{11}=22.875 \mathrm{kN} / \mathrm{m} \quad 25 \mathrm{kN} / \mathrm{m}$ [multiple of 5]
[Take dead load as x inclusive of dead load, don't mention step . 2]
iii) Live load $=8 \mathrm{kN} / \mathrm{m}$
$M_{D}=\frac{q_{d} \times l^{2}}{8}=\frac{25 \times 5^{2}}{8}=78 \mathrm{kN}-\mathrm{m}($ no decimal $)$
Dead load Live load moment $=\frac{q_{l} \times l^{2}}{8}=\frac{8 \times 5^{2}}{8}=25 \mathrm{KN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{u}}=1.5 \mathrm{MD}+1.5 \mathrm{ML}=1.5 \times 78+1.5 \times 25=154.5 \mathrm{kN}-\mathrm{m}$

Step -3 Check for depth
$\mathrm{d}_{\mathrm{bal}}=\sqrt{\frac{M_{u}}{Q_{\text {lim }} \times b}}$
From table.3, Qlim $=3.33$ (page -10$)$ SP-16
(h bal $<\mathrm{h}$ assumed condition for Safe design)
$=\sqrt{\frac{154.5 \times 10^{6}}{3.33 \times 230}=449.13}$
$\mathrm{Hbal}=449.13+50=499.13$
Hence assumed overall depth of 500 mm can be adopted.
Let us assume 20 mm dia bar $\& \mathrm{Cc}=30 \mathrm{~mm}$ (moderate exposure $\& 1.5$ hour fire resistance)
\therefore Ce provided $=30+10=40, \mathrm{~d}_{\text {provided }}=500-40=460 \mathrm{~mm}$
Step . 4 Longitudinal steel
$\frac{M_{u}}{b d^{2}}=\frac{154.5 \times 10^{6}}{230 \times 460^{2}}=3.17$
Page 49 - SP-16 $\quad M_{u} / b^{2} \quad$ pt

3.15	0.880
3.20	0.898

For $\quad \frac{M_{u}}{b d^{2}}=3.17, p_{t}=0.880+\frac{(0.898-0.880)}{(3.20-3.15)} \times(3.17-3.15)$
$=0.8872$
$A_{s t}=\frac{p_{t} b d}{100}=\frac{0.8872 \times 230 \times 460}{100}=938.66 \mathrm{~mm}^{2}$

No. of \# $20=\frac{938.66}{314}=2.98 \approx 3$ Nos.
$\left(\mathrm{A}_{\text {st }}\right)_{\text {provided }}=3 \times 314=942 \mathrm{~mm}^{2}>938.66 \mathrm{~mm}^{2}$.
Page - 47 - IS456

$$
\begin{gathered}
\left(\mathrm{A}_{\mathrm{st}}\right)_{\min }=\frac{0.85 b d}{f y}=\frac{0.85 \times 230 \times 460}{500}=179 \mathrm{~mm}^{2} \\
\therefore\left(\mathrm{~A}_{\mathrm{st}}\right)_{\text {provided }}>\left(\mathrm{A}_{\mathrm{st}}\right)_{\text {min }} . \text { Hence o.k. }
\end{gathered}
$$

Step. 5 Detailing
3. Design a rectangular beam to support a live load of 50 kN at the free end of a cantilever beam of span 2 m . The beam carries a dead load of $10 \mathrm{kN} / \mathrm{m}$ in addition to its self weight. Adopt M30 concrete \& Fe 500 steel.
$\mathrm{l}=2 \mathrm{~m}=2000 \mathrm{~mm}, q_{d}^{1}=10$, fck $=30 \mathrm{Mpa}, \mathrm{fy}=500 \mathrm{Mpa}, \mathrm{qL}=50 \mathrm{kN}, \mathrm{b}=230 \mathrm{~mm}$
Step - $1 \quad \mathrm{c} / \mathrm{s}$

NOTE: The depth of the beam is generally assumed to start with based on deflection criteria of serviceability. For this IS 456-2000-Page - 37, clause 23.2.1 gives
$\frac{l}{d}=5$ with some correction factor.
$\frac{l}{s}=\mathrm{d} \rightarrow \mathrm{d}=\frac{2000}{5}=400 \mathrm{~mm}$
Let $\mathrm{Ce}=50 \mathrm{~mm}, \mathrm{~h}=400+50=450 \mathrm{~mm}$
However we shall assume $h=500 \mathrm{~mm}$

Step-2 Load calculation.
(i) Self wt $=0.23 \times 0.5 \times 1 \times 25=2.875 \mathrm{kN} / \mathrm{m}=q_{d}^{11}$
(ii) Dead load given $=q_{d}^{1}=10 \mathrm{kN} / \mathrm{m}$

$$
\mathrm{qd}=q_{d}^{1}+q_{d}^{11}=10+2.875=12.87 \mathrm{kN} / \mathrm{m} \approx 15 \mathrm{kN} / \mathrm{m} \text { [multiply of5] }
$$

(iii) Live load $=50 \mathrm{kN}$

$$
\begin{aligned}
& M_{D}=\frac{q_{D} l^{2}}{2}=\frac{15 \times 2^{2}}{2}=50 \mathrm{KN}-m \\
& \mathrm{ML}=\mathrm{W} \text { X } 2=50 \times 2=100 \mathrm{kN}-\mathrm{m} \\
& \mathrm{M}_{\mathrm{u}}=1.5 \mathrm{MD}+1.5 \mathrm{ML}=195 \mathrm{kN}-\mathrm{m}=88
\end{aligned}
$$

Step - 3 Check for depth
$\mathrm{dbal}=\sqrt{\frac{M_{u}}{Q_{\text {lim } \times b}}}$ From table $-3, \mathrm{SP}-16($ page -10$) \mathrm{Q}_{\text {lim }}=3.99$

$$
=\sqrt{\frac{195 \times 10^{6}}{3.99 \times 230}}=460.96 \mathrm{~mm}
$$

$\mathrm{hbal}=460.96+50=510.96 \mathrm{~mm}$
hassumed $=550 \mathrm{~mm}$.
Let us assume 20 mm dia bars \& $\mathrm{Cc}=30 \mathrm{~mm}$ constant
\therefore Ce provided $=30+10=40$, dprovided $=550-40=510 \mathrm{~mm}$
Step - 4 Longitudinal steel

$$
\begin{aligned}
& \frac{M u}{b d^{2}}=\frac{195 \times 10^{6}}{230 \times 510^{2}}=3.26 \\
& \text { Page }-49 \mathrm{~m} \mathrm{SP}-16 \mathrm{~m}
\end{aligned}
$$

$\mathrm{M}_{\mathrm{u}} / \mathrm{bd}^{2}$	pt
3.25	0.916
3.30	0.935

For $\mathrm{M}_{\mathrm{u}} / \mathrm{bd}^{2}=3.26$,
$\mathrm{Pt}=0.916+\frac{(0.935-0.916)}{(3.30-3.25)} \times(3.26-3.25)$
$=0.9198$.
Ast $=\frac{p_{t} b d}{100}=\frac{0.9198 \times 230 \times 510}{100}=1078.9 \mathrm{~mm}^{2}$
3-\# 20, 1-\#16 = 1143
$2-\# 25 \quad 2=\# 20=1382$
$\left(\mathrm{A}_{\mathrm{st}}\right)_{\text {Provided }}=$
$\left(\mathrm{A}_{\mathrm{st}}\right)_{\min }=\frac{0.85 b d}{f y}=\frac{0.85 \times 230 \times 510}{500}=199.41 \mathrm{~mm}^{2}$
Step - 5 Detailing

Design of slabs supported on two edges

Slab is a 2 dimensional member provided as floor or roof which directly supports the loads in buildings or bridges.

In RCC, it is reinforced with small dia bars (6 mm to 16 mm) spaced equally.

Reinforcement provided in no. RCC beam $\rightarrow 1$ dia width is very ($12 \mathrm{~mm}-50 \mathrm{~mm}$) small compared to length. Element with const. Width: fixed width.

It is subjected to vol.
RCC slabs \rightarrow reinforcement are provided with equally spaced. No fixed width \& length are comparable, dia -6 mm to 16 mm . It is subjected to pressure.

Beams are fixed but slabs are not fixed. For design, slab is considered as a beam as a singly reinforced beam of width 1 m

Such slabs are designed as a beam of width $1 \mathrm{~m} \&$ the thickness ranges from 100 mm to 300 mm . IS456-2000 stipulates that $\frac{l}{d}$ for simply supported slabs be $35 \&$ for continuous slab 40 (page 39). For calculating area of steel in 1 m width following procedure may be followed.

$$
\text { Ast }=\mathrm{N} \times \frac{\pi}{4} \times \emptyset^{2} \quad ; \quad A_{s t}=\frac{1000 \times Q_{s t}}{s} \quad N=\frac{1000}{s}
$$

For every 10 cm there is a bar
$\mathrm{S}=\frac{a_{s t}}{A_{s t}} \times 1000$
(The loading on the slab is in the form of pr. expressed as $\mathrm{kN} / \mathrm{m}^{2}$)
As per clause 26.5.2-1 (page 48 min steel required is $\underline{0-15 \%}$ for mild steel \& $\underline{0-12 \%}$ for high strength steel. It also states that max. dia of bar to be used is $1 / 8^{\text {th }}$ thickness of the slab. To calculate $\%$ of steel we have to consider gross area is 1000 Xh .

The slabs are subjected to low intensity secondary moment in the plane parallel to the span. To resist this moment \& stresses due to shrinkage \& temp, steel reinforcement parallel to the span is provided. This steel is called as distribution steel. Min. steel to be provided for distribution steel.

Practically it is impossible to construct the
Slab as simply supported bozo of partial bond
b/w masonry \& concrete, also due to the parapet wall constructed above the roof slab. This induces small intensity of hogging BM. Which requires min. \% of steel in both the direction at the top of the slab as shown in fig. 2 different types of detailing is shown in fig.

Method-1

Crank \rightarrow for the change in reinforcement.
(1) Alternate cranking bars.

Dist. Steel is provided.

- To take care of secondary moment, shrinkage stresses \& temp. stress steel is provided parallel to the span.

Method-2

1. Compute moment of resistance of a 1- way slab of thickness 150 mm . The slab is reinforced with 10 mm dia bars at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. Adopt M20 concrete \& Fe 415 steel. Assume $\mathrm{Ce}=20 \mathrm{~mm}$.

Solve: $h=150 \mathrm{~mm}, C e=20 \mathrm{~mm}, \phi=10 \mathrm{~mm}$

$$
\mathrm{d}=150-20=130 \mathrm{~mm}, \mathrm{sx}=200 \mathrm{~mm}
$$

$$
\mathrm{A}_{\mathrm{st}}=\frac{1000}{s x} \times \frac{\pi}{4} \times \emptyset^{2}
$$

$$
=\frac{1000}{200} \times \frac{\pi}{4} \times 10^{2}
$$

$=392.7 \mathrm{~mm}^{2}$

Step - 1 N-A depth

$$
\begin{aligned}
& \begin{array}{l}
\frac{x_{u}}{d}=2.41 \frac{f y}{f c k} \frac{A s t}{b d} \\
\mathrm{x}_{\mathrm{u}}=2.41 \times \frac{415}{20} \times \frac{392.7}{1000} \\
=19.64 \mathrm{~mm}
\end{array} \\
& \mathrm{x}_{\mathrm{umax}}=0.48 \mathrm{~d}=0.48 \mathrm{X} 130=62.4 \mathrm{~mm}
\end{aligned}
$$

Step - 2 Moment of resistance
$\mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{umax}}$. hence section is under reinforced.
$\operatorname{MuR}=0.87 \mathrm{fy}$ Asta(d-0-42 x_{u})

$$
\begin{aligned}
& \frac{0.87 \times 415 \times 392.7(130-0.42 \times 19.64)}{10^{6}} \\
& =17.26 \mathrm{kN}-\mathrm{m} / \mathrm{m} .
\end{aligned}
$$

Doubly reinforced Beams.

Limiting state or Balanced section.
Cuc $=0.36$ fck $b_{\text {xulim }}$
$\mathrm{T}_{\mathrm{u} 1}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$
Mulim $=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{bx} \mathrm{ulim}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{ulim}}\right)$
$\mathrm{p}_{\text {tlim }}=0.414 \frac{x_{\text {ulim }}}{d} \times \frac{f c k}{f y}$
$\mathrm{A}_{\mathrm{st}}=\frac{P_{\text {tlim }}}{100} \times b d$
$\mathrm{M}_{\mathrm{u}}>\mathrm{M}_{\mathrm{ulim}} \quad \mathrm{M}_{\mathrm{u}}=$ applied factored moment.
$\mathrm{M}_{\mathrm{u}_{2}}=\mathrm{M}_{\mathrm{u}^{-}}$-Mulim
For $\mathrm{M}_{\mathrm{u} 2}$ we require Ast in compression zone \& Ast A_{2} in tension zone for equilibrium
Cus $=\mathrm{T}_{\mathrm{u} 2}$
Cus $=$ fsc. Asc : Fsc is obtained from stress - strain curve of corresponding steel.
In case of mild steel, it is $\mathrm{fsc}=\frac{f y}{1.15}=0.87 f y$

In case of high strength deformable bars,
fsc corresponding to strain esc should be obtained from table A-SP-16(Page - 6)

$$
\mathrm{Z}_{2}=\mathrm{d}-\mathrm{d}^{1} \quad \text { If } \varepsilon \mathrm{sc}<0.00109
$$

$$
\mathrm{fsc}=\varepsilon s X \varepsilon s c
$$

else fst $=$ fy/1.15
$\frac{\epsilon c u}{x_{\text {ulim }}}=\frac{\epsilon S c}{x_{\text {ulim }}-d^{1}}$
$\epsilon S c=\frac{\epsilon c u\left(x_{u l i m}-d^{1}\right)}{x_{u l i l m}}$
$\mathrm{T}_{\mathrm{u} 2}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st} 2} \rightarrow 1$
Couple $\mathrm{M}_{\mathrm{u} 2}=\operatorname{Cus~XZ} \mathrm{Z}_{2}=\mathrm{T}_{\mathrm{u} 2} \mathrm{Z}_{2}$
$\mathrm{M}_{\mathrm{u} 2}=\left(\mathrm{fsc}\right.$ Asc)(d-d $\left.{ }^{1}\right)$
$A_{s c}=\frac{M_{u 2}}{f s c\left(d-d^{1}\right)} \rightarrow 2$
Cus $=\mathrm{T}_{\mathrm{u} 2}$
fsc X Asc $=0.87 \mathrm{ffy} \mathrm{Ast}_{2}$

$$
A_{s t 2}=\frac{F s c A s c}{0.87 f y} \rightarrow 3
$$

Procedure for design of doubly reinforced section.

Step. 1 Check for requirement of doubly reinforced section

1. Find xulim using IS456
2. Find Mulim for the given section as Mulim $=$ QlimXbd ${ }^{2}$ Refer table -D , page -10 , of SP - 16 for Qlim
3. Find ptlim from table - E page 10 of $\mathrm{SP}-16 \&$ then compute.
$A_{s t}=\frac{p_{t l i m} \times b \times d}{100}$
Step - 2 If $M_{u}>M_{u}$ lim then design the section as doubly reinforced section, else design as singly reinforced section.
$\underline{\text { Step - } 3} \quad \mathrm{M}_{\mathrm{u} 2}=\mathrm{M}_{\mathrm{u}}-\mathrm{M}_{\mathrm{u}} \lim$

Step - 4 Find area of steel in compression zone using the equation as
Asc $=\frac{M_{u 2}}{f s c\left(d-d^{1}\right)}$ fsc has to be obtained from stress - strain curve or from table - A, page -6 of SP-16.

The strain $\varepsilon s c$ is calculated as $\frac{\epsilon_{c u}\left(x_{u l i m}-d^{1}\right)}{x_{u l i m}}$
Step - 5 Additional tension steel required is computed as

$$
A_{s t 2}=\frac{f_{s c} A_{s c}}{0.87 f y}
$$

\therefore Total steel required Ast $=\mathrm{Ast}_{1}+\mathrm{Ast}_{2}$ in tension zone.

Use of SP-16 for design of doubly reinforced section table $-45-56$, page 81-92 provides pt \& pc:
$\mathrm{pt}=\frac{A s t}{b d} \times 100$
$\operatorname{Pc}=\frac{A s c}{b d} \mathrm{X} 100$ for different values of $\mathrm{M}_{\mathrm{u}} / \mathrm{bd}^{2}$ corresponding to combination of fck \& fy. Following procedure may be followed.

Step - 1 Same as previous procedure.

Step - 2 If $\mathrm{M}_{\mathrm{u}}>$ Mulim, find $\mathrm{M}_{\mathrm{u}} / \mathrm{bd}^{2}$ using corresponding table for given fy \& fck obtain pt \& pc. Table - 46.

NOTE: An alternative procedure can be followed for finding fsc in case of HYSD bars i.e use table - F, this table provides fsc for different ratios of $\mathrm{d}^{1} / \mathrm{d}$ corresponding to $\mathrm{Fe} 415 \& \mathrm{Fe} 500$ steel

Procedure for analysis of doubly reinforced beam
Data required: $\mathrm{b}, \mathrm{d}, \mathrm{d}^{1}, \mathrm{~A}_{\mathrm{st}}\left(\mathrm{A}_{\mathrm{st}}+\mathrm{A}_{\mathrm{st}_{2}}\right), \mathrm{A}_{\mathrm{sc}}, \mathrm{f}_{\mathrm{ck}}, \mathrm{fy}$

Step-1 Neutral axis depth
$\mathrm{C}_{\mathrm{uc}}+\mathrm{C}_{\mathrm{us}}=\mathrm{T}_{\mathrm{u}}$
$0.36 \mathrm{f}_{\mathrm{ck}}<\mathrm{bx}_{\mathrm{u}}+\mathrm{f}_{\mathrm{sc}} \mathrm{A}_{\mathrm{sc}}=0.87 \mathrm{fy} . \mathrm{A}_{\mathrm{st}}$.
$\mathrm{x}_{\mathrm{u}}=\frac{0.87 f y A_{s t}-f_{s c} A_{s c}}{0.36 f_{c k} b}$

This is approximate value as we have assumed the tensile stress in tension steel is $0.87 \mathrm{f}_{\mathrm{y}}$ which may not be true. Hence an exact analysis has to be done by trial \& error. (This will be demonstrated through example).

$\mathrm{M}_{\mathrm{ulim}}=0.36 \mathrm{f}_{\mathrm{ck}} . \mathrm{b} \mathrm{x}_{\mathrm{u}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)+\mathrm{f}_{\mathrm{st}} \mathrm{A}_{\mathrm{sc}} \mathrm{X}\left(\mathrm{d}^{2}-\mathrm{d}^{1}\right)$

1. Design a doubly reinforced section for the following data.
$\mathrm{b}=250 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}, \mathrm{~d}^{1}=50 \mathrm{~mm}, \mathrm{M}_{\mathrm{u}}=500 \mathrm{kN}-\mathrm{m}$ con-, M_{30}, steel $=\mathrm{Fe} 500$.
$\frac{d^{1}}{d}=0.1, \mathrm{f}_{\mathrm{ck}}=30 \mathrm{Mpa}, \mathrm{fy}=500 \mathrm{Mpa}$.
$\mathrm{M}_{\mathrm{u}}=500 \times 10^{6} \mathrm{~N}-\mathrm{mm}$

Step - 1 Moment of singly reinforcement section.
Page - 70 -IS-456 $\frac{x_{u l i m}}{d}=0.46$
$\mathrm{x}_{\text {ulim }}=0.46 \mathrm{X} 500=230 \mathrm{~mm}$.
$\mathrm{M}_{\mathrm{ulim}}=\mathrm{Q}_{\mathrm{lim}} X \mathrm{bd}^{2}=\frac{3.99 \times 250 \times 500^{2}}{10^{6}}=249 \mathrm{kN}-\mathrm{m}$.
Page - 10 SP-16
$\mathrm{P}_{\text {tlim }}=1.13: \mathrm{A}_{\text {st }_{1}}=\mathrm{A}_{\text {stlim }}=\frac{1.13 \times 250 \times 500}{100}=1412.5 \mathrm{~mm}^{2}$
$\mathrm{M}_{\mathrm{u}}>\mathrm{M}_{\mathrm{ulim}}$

Step - $2 \quad \mathrm{M}_{\mathrm{u} 2}=\mathrm{M}_{\mathrm{u}}-\mathrm{M}_{\mathrm{ulim}}=500-249=251 \mathrm{kN}-\mathrm{m}$.
$\mathrm{A}_{\mathrm{sc}}=\frac{M_{u 2}}{f_{s c}\left(d-d^{1}\right)}$ page - 13. SP-16. Table -F
$=\frac{251 \times 10^{6}}{412(500-50)}=1353.83 \mathrm{~mm}^{2}$
From equilibrium condition,

$$
\begin{aligned}
& A_{s t 2}=\frac{f_{s c} A_{s c}}{0.87 f y}=\frac{412 \times 1353.83}{0.87 \times 500}=1282.25 \mathrm{~mm}^{2} \\
& \mathrm{~A}_{\text {st }}=\mathrm{A}_{\mathrm{st}_{1}}+\mathrm{A}_{\mathrm{st}_{2}}=1412.5+1282.25=2694.75 \mathrm{~mm}^{2}
\end{aligned}
$$

Step-3: Detailing.
$\mathrm{A}_{\mathrm{sc}}=1353 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{st}}=2694 \mathrm{~mm}^{2}$

Tension steel

Assume \# 20 bars $=\frac{2694}{314}=8.5$
However provide 2 - \#25 + 6 - \#20
$\left(\mathrm{A}_{\text {st }}\right)_{\text {provided }}=2$ X $490+6$ X $314=2864 \mathrm{~mm}^{2}>2694 \mathrm{~mm}^{2}$

Compression steel

Assume \#25, No $=\frac{1353}{490}=2.7$
Provide 3-\#25 ($\left.\mathrm{A}_{\text {st }}\right)_{\text {provided }}=3 \mathrm{X} 490=1470 \mathrm{~mm}^{2}>1353 \mathrm{~mm}^{2}$

$$
\mathrm{C}_{\mathrm{e}}=30+25+12.5=67.5 \mathrm{~mm}
$$

2. Design a rectangular beam of width 300 mm \& depth is restricted to $750 \mathrm{~mm}(\mathrm{~h})$ with a effective cover of 75 mm . The beam is simply supported over a span of 5 m . The beam is subjected to central con. Load of 80 kN in addition to its self wt. Adopt M30 concrete \& Fe 415 steel.

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d}}=0.3 \times 0.75 \text { X } 1 \text { X } 25=5.625 \\
& \mathrm{M}_{\mathrm{D}}=\frac{W d^{2}}{8}=17.6 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ML}=\frac{w_{l} \times l}{4}=100 \mathrm{kN}-\mathrm{m} \\
& \mathrm{Mu}=1.5\left(\mathrm{M}_{\mathrm{D}}+\mathrm{M}_{\mathrm{L}}\right)=176.4
\end{aligned}
$$

3. Determine areas of compression steel \& moment of resistance for a doubly reinforced rectangular beam with following data.
$\mathrm{b}=250 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{mmm}, \mathrm{d}^{1}=50 \mathrm{~mm}, \mathrm{~A}_{\mathrm{st}}=1800 \mathrm{~mm}^{2}, \mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpa}, \mathrm{f}_{\mathrm{y}}=415 \mathrm{Mpa}$. Do not neglect the effect of

Compression reinforcement for calculating Compressive force.

Solve: $\mathrm{C}_{\mathrm{c}_{1}} \rightarrow$ introduce a negative force
Note: $\mathrm{C}_{\mathrm{u}}=\mathrm{C}_{\mathrm{sc}}+\mathrm{C}_{\mathrm{c}}-\mathrm{C}_{\mathrm{c}_{1}}$

$$
\begin{aligned}
& =f_{\mathrm{sc}} \mathrm{~A}_{\mathrm{sc}}+0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{bx} \mathrm{x}_{\mathrm{u}}-0.45 \mathrm{f}_{\mathrm{ck}} \text { X A }_{\mathrm{sc}} \\
& =0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{bx} \mathrm{x}_{\mathrm{u}}+\mathrm{A}_{\mathrm{sc}}\left(\mathrm{f}_{\mathrm{sc}}-0.45 \mathrm{f}_{\mathrm{ck}}\right)
\end{aligned}
$$

For calculating compressive force then,
Whenever the effect of compression steel is to be considered.

Step - 1 Depth of N-A.
From IS - 456 for M20 concrete and Fe 415 steel is
$\frac{x_{u \max }}{d}=0.48 \& \mathrm{x}_{\mathrm{umax}}=0.48 \mathrm{X} 500=240 \mathrm{~mm}$
From table $-6, \mathrm{SP}-16$ page- $10, \mathrm{p}_{\text {tlim }}=0.96$
$\mathrm{A}_{\text {st }}=\mathrm{A}_{\text {stlim }}=\frac{0.96 \times 250 \times 500}{100}=1200 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{st}_{2}}=\mathrm{A}_{\mathrm{st}^{-}} \mathrm{A}_{\mathrm{st}_{1}}=1800-1200=600 \mathrm{~mm}^{2}$
$\underline{\text { Step }-2}: \underline{\text { Asc }}$
For equilibrium, $\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$.
In the imaginary section shown in fig.
$\mathrm{C}_{\mathrm{u} 1}=\mathrm{A}_{\mathrm{sc}}\left(\mathrm{f}_{\mathrm{sc}}-0.45 \mathrm{f}_{\mathrm{ck}}\right)$
$\frac{d^{1}}{d}=\frac{500}{500}=0.1$, Table $-\mathrm{F}, \mathrm{SP}-16, \mathrm{P}-13, \mathrm{f}_{\mathrm{sc}}=353 \mathrm{Mpa}$
Ast $_{2}$
$\mathrm{A}_{\mathrm{sc}}(353-0.45 \mathrm{X} 20)=600 \mathrm{X} 0.87 \times 415$
$\mathrm{A}_{\mathrm{sc}}=629 \mathrm{~mm}^{2}$
$\underline{\text { Step }-3}$ MR $\quad A_{s c}\left(f_{s c}-0.45 f_{c k}\right)\left(d-d^{1}\right)$
$\mathrm{Mur}_{2}=\mathrm{C}_{\mathrm{u} 1} \times \mathrm{Z}_{2}=\frac{629 \mathrm{X}(353-0.45 \mathrm{X} 20) \mathrm{X}(500-50)}{10^{6}}$

$$
=97.6 \mathrm{kN}-\mathrm{m}
$$

$\mathrm{Mur}_{1}=\mathrm{M}_{\mathrm{ulim}}=\mathrm{Q}_{\text {lim }} \mathrm{bd}^{2} \quad \mathrm{Q}_{\text {lim }}=2.76$

$$
=\frac{2.76 \mathrm{X} 250 \times 500^{2}}{10^{6}}=172 \mathrm{kN}-\mathrm{m} .
$$

$\mathrm{M}_{\mathrm{ur}}=\mathrm{M}_{\mathrm{ur} 1}+\mathrm{M}_{\mathrm{ur} 2}=97.6+172=269.8 \mathrm{kN}-\mathrm{m}$
$\mathrm{A}_{\mathrm{sc}}=629 \mathrm{~mm}^{2}, \mathrm{M}_{\mathrm{ur}}=269.8 \mathrm{kN}-\mathrm{m}$
4. A rectangular beam of width 300 mm \& effective depth 550 mm is reinforced with steel of area $3054 \mathrm{~mm}^{2}$ on tension side and $982 \mathrm{~mm}^{2}$ on compression side, with an effective cover of 50 mm . Let MR at ultimate of this beam is M20 concrete and Fe 415 steel are used. Consider the effect of compression reinforcement in calculating compressive force. Use $1^{\text {st }}$ principles No. SP - 16.

Solve: Step: 1 N -A depth
$\frac{\text { xulim }}{d}=0.48$
$\mathrm{x}_{\mathrm{ulim}}=0.48 \mathrm{X} 550=264 \mathrm{~mm}$

Assuming to start with $\mathrm{f}_{\mathrm{sc}}=0.87 \mathrm{fy}=0.87 \mathrm{X} 415=361 \mathrm{Mpa}$.
Equating the total compressive force to tensile force we get,
$\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}=\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{bx}_{\mathrm{u}}+\mathrm{A}_{\mathrm{st}}\left(\mathrm{f}_{\mathrm{sc}}-0.45 \mathrm{f}_{\mathrm{ck}}\right)$

$$
\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{fy} \mathrm{~A}_{\mathrm{st}} .
$$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{u}}=\frac{0.87 \times 415 \times 3054-982(361-0.45 \times 20)}{0.36 \times 20 \times 300} \rightarrow 1 \\
& =350.45 \mathrm{~mm}>\mathrm{X}_{\mathrm{ulim}} .
\end{aligned}
$$

Hence the section is over reinforced.
The exact N -A depth is required to be found by trial \& error using strain compatibility, for which we use equation (1) in which the value of fsc is unknown, hence we get,

$$
\begin{aligned}
\mathrm{X}_{\mathrm{u}} & =\frac{\mathrm{fst} \times 3054-982(\mathrm{fsc}-0.45 \mathrm{X} 20)}{0.36 \times 20 \times 300} \\
& =\frac{3054 \mathrm{fst}-982 \mathrm{fsc}+8779}{2172}(2)
\end{aligned}
$$

Range of $x_{u} \& 264$ to 350.4
Cycle - 1 Try $\left(\mathrm{x}_{\mathrm{u}}\right)_{1}=\frac{264+350.4}{2}=307 \mathrm{~mm}$
From strain diagram $\varepsilon s c=0.0035\left(1-\frac{50}{307}\right)=0.00293 \quad($ similar triangle $)$
$\left.\varepsilon_{\mathrm{st}}=\frac{0.0035 \times 550}{307}-1\right)=0.00279$
$\mathrm{f}_{\mathrm{sc}}=339.3 \mathrm{~mm}$. The difference $\mathrm{b} / \mathrm{w}\left(\mathrm{x}_{\mathrm{u}}\right)_{1} \&\left(\mathrm{x}_{\mathrm{u}}\right)_{2}$ is large, hence continue cycle 2 .
Cycle-2 Try $\left(\mathrm{x}_{\mathrm{u}}\right)_{3}=\frac{307+339.3}{2}=323 \mathrm{~mm}$
From strain diagram, $\varepsilon s \mathrm{c}=0.0035\left(1-\frac{50}{323}\right)=0.00296$.
$\varepsilon_{\text {st }}=0.0035\left(\frac{550}{323}-1\right)=0.00246$
$\mathrm{f}_{\mathrm{sc}}=353.5, \mathrm{f}_{\mathrm{st}}=344.1,\left(\mathrm{x}_{\mathrm{u}}\right)_{4}=328$
The trial procedure is covering, we shall do 1 more cycle.
Cycle -3 Try $\left(\mathrm{x}_{\mathrm{u}}\right)_{5}=\frac{323+328}{2}=325.5 \mathrm{~mm}$.
From strain diagram, $\varepsilon_{\mathrm{sc}}=0.0035\left(1-\frac{50}{325.5}\right)=0.00296$.
$\varepsilon_{\mathrm{st}}=0.0035\left(\frac{550}{325.5}-1\right)=0.00241$
$\mathrm{f}_{\mathrm{sc}}=353.5, \mathrm{f}_{\mathrm{st}}=342.8 .\left(\mathrm{x}_{\mathrm{u}}\right)_{6}=326.2$
$\therefore \mathrm{x}_{\mathrm{u}}=326.2 \mathrm{~mm}$.

Step. 2
$\mathrm{M}_{\mathrm{ur}}=\frac{(0.36 \times 20 \times 300 \times 326)(550-0.42 \times 326)+982(353.5-0.45 \times 20)\left(\mathrm{d}-\mathrm{d}^{1}\right)(550-50)}{10^{6}}=463 \mathrm{kN}-\mathrm{m}$
5. Repeat the above problem for Fe 450.

Note: $x_{u}<x_{u m a x}$, hence cyclic procedure is not required.
$\mathrm{x}_{\mathrm{u}}=211.5, \mathrm{M}_{\mathrm{ur}}=315 \mathrm{kN}-\mathrm{m}$.
6. A rectangular beam of width 300 mm \& effective depth of 650 mm is doubly reinforced with effective cover $\mathrm{d}^{1}=45 \mathrm{~mm}$. Area of tension steel 1964, area of compression steel $=982 \mathrm{~mm}^{2}$. Let ultimate MR if M- 20 concrete and Fe 415 steel are used.

Ans: $\mathrm{x}_{\mathrm{u}}=11734 \mathrm{~mm}, \mathrm{M}_{\mathrm{ur}}=422 \mathrm{kN}-\mathrm{m}$
Flanged sections.

$$
\mathrm{T}-\sqrt{\text { section }} \quad \mathrm{L} \text { - section }
$$

- Concrete slab \& concrete beam are

Cast together \rightarrow Monolithic construction

- Beam \rightarrow tension zone, slab in comp. zone
- Slab on either side $\rightarrow \mathrm{T}$ beam

Slab on one side $\rightarrow 1$ beam

- bf \rightarrow effective width $\mathrm{bf}>\mathrm{b}$

T- beam
$b_{f}=\frac{l o}{6}+b w+6 D_{f}$

- $1_{0}=0.7 \mathrm{le}$: continuous \& frames beam.
- A \& B paints of contra flexure (point of zero moment)

L-Beam

$\mathrm{b}_{\mathrm{f}}=\frac{\mathrm{lo}}{12}+\mathrm{bw}+3 \mathrm{Df}$
Isolated T- beam

It is subjected to torsion \& BM

- If beam is resting on another beam it can be called as L - beam.
- If beam is resting on column it cannot be called as L- beam. It becomes -ve beam.

Analysis of T - beam :- All 3 cases NA is computed from $C_{u}=T_{u}$.

Case-1 - neutral axis lies in flange.

Case (ii) : NA in the web \& $\frac{D f}{d} \leq 0.2$

Whitney equivalent rectangular stress block.
$\underline{\text { Case (iii): NA lies in web } \& \frac{D f}{d}>0.2}$

1. All three cases NA is computed from $C_{u}=T_{u}$.
2. $\mathrm{X}_{\text {ulim }}$ same as in rectangular section.

- Depth of NA for balanced s / n depends on grade of steel.

3. Moment of resistance

$$
\text { Case . (1) } \mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}_{\mathrm{f}} \mathrm{x}_{\mathrm{u}} \quad \mathrm{~T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}
$$

$$
\mathrm{M}_{\mathrm{ur}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}_{\mathrm{f}} \mathrm{x}_{\mathrm{u}}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \text { or } 0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right)
$$

Case - (ii) $\mathrm{C}_{\mathrm{u}}=\underbrace{0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}}}_{1} \mathrm{x}_{\mathrm{u}}+\underbrace{0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right)}_{2}$) $\mathrm{Df}\left(\mathrm{d}-\frac{D f}{2}\right)$
$\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$
$\mathrm{M}_{\mathrm{ur}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{D}_{\mathrm{f}}\left(\mathrm{d}-\frac{\mathrm{Df}}{2}\right)$

Case (iii)

$\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{X}_{\mathrm{u}}+0.45 \mathrm{f}_{\mathrm{ck}}(\mathrm{bf}-\mathrm{bw}) \mathrm{y}_{\mathrm{f}}$.
$\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$.
Page . 97, $\quad M_{u r}=0.36 f_{c k} b_{w} x_{u}\left(d-0.42 x_{u}\right)+0.45 f_{c k}\left(b_{f}-b_{w}\right) y_{f}\left(d-\frac{y t}{2}\right)$
Where, $\mathrm{y}_{\mathrm{f}}=0.15 \mathrm{x}_{\mathrm{u}}+0.65 \mathrm{D}_{\mathrm{f}}$
Obtained by equating areas of stress block.

- When $\mathrm{D}_{\mathrm{f}} / \mathrm{x}_{\mathrm{u}} \leq 0.43 \& \mathrm{D}_{\mathrm{f}} / \mathrm{x}_{\mathrm{u}}>0.43$ for the balanced section \& over reinforced section use $\mathrm{x}_{\text {umax }}$ instead of x_{u}.

Problem.

1. Determine the MR of a T - beam having following data.
a) flange width $=1000 \mathrm{~mm}=\mathrm{bf}$
b) Width of web $=300 \mathrm{~mm}=\mathrm{bw}$
c) Effective depth $=, \mathrm{d}=450 \mathrm{~mm}$
d) Effective cover $=50 \mathrm{~mm}$
e) $\mathrm{A}_{\mathrm{st}}=1963 \mathrm{~mm}^{2}$
f) Adopt M20 concrete \& Fe 415 steel.

Solve: Note:
In the analysis of T - beam, assume $\mathrm{N}-\mathrm{A}$
To lie in flange \& obtain the value of
x_{u}. If $x_{u}>D_{f}$ then analyses as case (2) or (3) depending on the ratio of $\mathrm{D}_{\mathrm{f}} / \mathrm{d}$. If $\mathrm{D}_{\mathrm{f}} / \mathrm{d} \leq 0.2$ case (2) or $\mathrm{D}_{\mathrm{f}} / \mathrm{d}>0.2$ case (3)

Step - 1

$$
\begin{aligned}
& \text { Assume NA in flange } \\
& \mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}_{\mathrm{f}} \mathrm{x}_{\mathrm{u}} \quad \mathrm{~T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}} \\
& \mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}} . \\
& 0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}_{\mathrm{f}} \mathrm{x}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}} \\
& \mathrm{x}_{\mathrm{u}}=\frac{0.87 \times 415 \times 1963}{0.36 \times 20 \times 1000} \\
& \quad=98.4 \mathrm{~mm}<\mathrm{D}_{\mathrm{f}}=1000 \mathrm{~mm} .
\end{aligned}
$$

Assumed NA position is correct i.e(case . 1)

Step-2: $M_{u r}=0.36 f_{c k} b_{f} X_{u}\left(d-0.42 x_{u}\right)$

$$
=0.36 \text { X } 20 \text { X } 1000 \text { X 98.4(450-0.42 X 98.4)/106 }
$$

$$
=290 \mathrm{kN}-\mathrm{m}
$$

Or $\quad \mathrm{M}_{\mathrm{ur}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)$

$$
\begin{aligned}
& =0.87 \text { X } 415 \text { X 1963(450-0.42 X 98.4) } \\
& =290 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Use of SP 16 for analysis p: 93-95
For steel of grade Fe 250, $\mathrm{Fe} 415 \& \mathrm{Fe} 500, \mathrm{SP}-16$ provides the ratio $\frac{\mathrm{Mu}}{\mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{d}^{2}}$ for combinations of $\frac{D f}{d}$ and $\frac{b f}{b w}$ using this table the moment of resistance can be calculated as $\mathrm{M}_{\mathrm{u}}=\mathrm{K}_{\mathrm{T}} \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{d}^{2}$ where K_{T} is obtained from SP -16 .

Solve: $\frac{\mathrm{Df}}{\mathrm{d}}=\frac{100}{450}=0.22>0.2$

$$
\frac{\mathrm{bf}}{\mathrm{bw}}=\frac{1000}{300}=3.33
$$

For Fe 415m P:94
$\frac{\mathrm{bf}}{\mathrm{bw}} \quad 3 \quad 4$
$\begin{array}{lll}\mathrm{K}_{\mathrm{T}} & 0.309 & 0.395\end{array}$
K_{T} for $\frac{\mathrm{bf}}{\mathrm{bw}}=3.3 \Rightarrow 0.309+\frac{(0.395-0.309)}{(4-3)} \mathrm{X}(3.3-3)$
$=0.337$
$\mathrm{M}_{\text {ulim }}=\frac{0.337 \times 20 \times 300 \times 450^{2}}{10^{6}}=410 \mathrm{kN}-\mathrm{m}$.
This value corresponds to limiting value. The actual moment of resistance depends on quantity of steel used.
2. Determine area of steel required \& moment of resistance corresponding to balanced section of a T - beam with the following data, $\mathrm{bf}=1000, \mathrm{D}_{\mathrm{f}}=100 \mathrm{~mm}, \mathrm{~b}_{\mathrm{w}}=300 \mathrm{~mm}$, effective cover $=$ $50 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}$, Adopt M20 concrete \& Fe 415 steel.

Use $1^{\text {st }}$ principles.
Solve: $\underline{\text { Step }-1} \frac{\text { Df }}{\mathrm{d}}=\frac{100}{450}=0.22>0.2$ case (iii)
Step $-2 \quad y_{f}=0.15 x_{\text {umax }}+0.65 D_{f}$
$\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{x}_{\mathrm{umax}}+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{y}_{\mathrm{f}}$.
$\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {stlim }}$
For $\mathrm{Fe} 415, \mathrm{x}_{\mathrm{umax}}=0.48 \mathrm{~d}=216 \mathrm{~mm}>\mathrm{D}_{\mathrm{f}}$.
$\mathrm{C}_{\mathrm{u}}=0.36 \times 20 \times 300 \times 216+0.45 \times 20(1000-300) 97.4=1.0801 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{X} \mathrm{216}+0.65 \mathrm{X} 100=97.4 \mathrm{~mm}$
$\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$
$\mathrm{C}_{\mathrm{u}}=0.87 \mathrm{X} 415 \mathrm{~A}_{\mathrm{st}}$.

1. $0801 \times 10^{6}=0.87 \times 415 \mathrm{~A}_{\text {stlim }}$ $\underline{A}_{\text {stlim }}=2991.7 \mathrm{~mm}^{2}$

Step - $3 \quad M_{u r}=0.36 f_{c k} b_{w} X_{u \max }\left(d-0.42 x_{u m a x}\right)+0.45 f_{c k}\left(b_{f}-b_{w}\right) y_{f}\left(d-\frac{y f}{2}\right)$.

$$
=0.36 \text { X } 20 \text { X } 300 \text { X } 216(450-0.42 \text { X 216) + } 0.45 \text { X } 20 \text { (1000-300) } 97.4 \text { (450 - }
$$

$$
\begin{aligned}
& \left.\frac{97.4}{2}\right) \\
& \mathrm{M}_{\mathrm{ur}}=413.27 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

3. Determine M R for the c / s of previous beam having area of steel as $2591 \mathrm{~mm}^{2}$

Step - 1 Assume N-A in flange
$\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{f} \mathrm{X}_{\mathrm{u}}}$
$\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$
For equilibrium $C_{u}=T_{u}$

$$
\begin{aligned}
& 0.36 \text { X } 20 \times 1000 x_{u}=0.87 \times 415 \times 2591 \\
& x_{u}=129.9 m m>D_{f}
\end{aligned}
$$

$\therefore \mathrm{N}$-A lies in web

$$
\begin{aligned}
& \quad \frac{\mathrm{Df}}{\mathrm{~d}}=\frac{100}{450}=0.22>0.2 \quad \text { case (iii) } \\
& \therefore \mathrm{y}_{\mathrm{f}}=0.15 \mathrm{x}_{\mathrm{u}}+0.65 \mathrm{D}_{\mathrm{f}}=0.15 \mathrm{X} \mathrm{x}_{\mathrm{u}}+0.65 \times 100=0.15 \mathrm{x}_{\mathrm{u}}+65 \\
& \mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}} \\
& \mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{y}_{\mathrm{f}}= \\
& \mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}=0.87 \times 450 \times 2591=1014376.5 \\
& \quad 1014376.5=0.36 \times 20 \times 300 \mathrm{x}_{\mathrm{u}}+0.45 \times 20(1000-300) 84.485
\end{aligned}
$$

$\mathrm{x}_{\mathrm{u}}=169.398 \mathrm{~mm}<\mathrm{x}_{\mathrm{umax}}=0.48 \times 450=216 \mathrm{~mm}$
It is under reinforced section.

Step-2 MR for under reinforced section depends on following.
(1) $\frac{\mathrm{Df}}{\mathrm{d}}=0.22>0.2$ (case iii)
(2) $\frac{\mathrm{Df}}{\mathrm{xu}}=\frac{100}{169.398}=0.59>0.43$

Use yf instead of D_{f} in computation of MR

$$
\begin{aligned}
\therefore \mathrm{y}_{\mathrm{f}} & =0.15 \mathrm{x}_{\mathrm{u}}+0.65 \mathrm{D}_{\mathrm{f}} \\
& =0.15 \times 169.398+0.65 \times 100 \\
& =90.409 \mathrm{~mm} .
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{ur}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} \mathrm{~b}_{\mathrm{w}}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right)+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{y}_{\mathrm{f}}\left(\mathrm{~d}-\frac{\mathrm{yf}}{2}\right)
$$

$$
=0.36 \text { X } 20 \text { X } 169.398 \text { X } 300(450-0.42 \times 169.398)+0.45 \text { X } 20(1000-300) 90.409(450-
$$

$$
\left.\frac{90.409}{2}\right)
$$

$$
=\underline{\mathrm{M}}_{\underline{\mathrm{ur}}}=369.18 \mathrm{kN}-\mathrm{m}
$$

Design procedure

Data required:

1. Moment or loading with span \& type of support
2. Width of beam
3. Grade of concrete \& steel
4. Spacing of beams.

Step - 1 Preliminary design
From the details of spacing of beam \& thickness of slabs the flange width can be calculated from IS code recommendation.

$$
\mathrm{b}_{\mathrm{f}}=\frac{\mathrm{lo}}{6}+\mathrm{bw}+6 \mathrm{D}_{\mathrm{f}} . \quad \mathrm{P}-37: \text { IS } 456
$$

Approximate effective depth required is computed based on $1 / \mathrm{d}$ ratio $\mathrm{d} \approx \frac{1}{12}$ to $\frac{l}{15}$
Assuming suitable effective cover, the overall depth, $h=d+C_{e}$ round off ' h ' to nearest 50 mm integer no. the actual effective depth is recalculated, $d_{\text {provided }}=h-C_{e}$

Approximate area of steel i.e computed by taking the lever arm as $\mathrm{Z}=\mathrm{d}-\frac{\mathrm{Df}}{2}$
$\mathrm{M}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} \mathrm{XZ}$
$\mathrm{A}_{\text {st }}=\frac{\mathrm{Mu}}{0.87 \mathrm{fy}\left(\mathrm{d}-\frac{\mathrm{df}}{2}\right)}$
Using this A_{st}, no. of bars for assumed dia is computed.
Round off to nearest integer no. \& find actual A_{st}.
NOTE: If the data given is in the form of a plan showing the position of the beam \& loading on the slab is given as ' q ' $\mathrm{kN} / \mathrm{m}^{2}$ as shown in the fig.

$$
\mathrm{W}=\mathrm{q} \times \mathrm{S} \text { X } 1 \text { also, } \mathrm{b}_{\mathrm{f}} \leq \mathrm{s}
$$

Step-2 N-A depth
The N-A depth is found by trial procedure to start with assume the N-A to be in the flange. Find N-A by equating $C_{u} \& T_{u}$ if $x_{u}<D_{f}$ then NA lies in flange else it lies in web.

In case of NA in the web then find $\frac{D f}{d}$. If $\frac{\text { Df }}{d} \leq 0.2$, use the equations for $\mathrm{C}_{\mathrm{u}} \& \mathrm{~T}_{\mathrm{u}}$ as in case (II) otherwise use case (III).

Compute $\mathrm{x}_{\mathrm{ulim}}$ \& compare with x_{u}. If $\mathrm{x}_{\mathrm{u}}>\mathrm{x}_{\mathrm{ulim}}$ increase the depth of the beam \& repeat the procedure for finding x_{u}.

Step . 3 Moment of resistance

Based on the position of NA use the equations given in cases (I) or case (II) or case (III) of analysis. For safe design $M_{u r}>M_{u}$ else redesign.

Step. 4 Detailing.

Draw the longitudinal elevation $\& \mathrm{c} / \mathrm{s}$ of the beam showing the details of reinforcement.

1. Design a simply supported T - beam for the following data. (I) Factored $\mathrm{BM}=$ $900 \mathrm{kN}-\mathrm{m}$ (II) width of web $=350 \mathrm{~mm}$ (III) thickness of slab $=100 \mathrm{~mm}$ (IV)spacing of beams $=4 \mathrm{~m}(\mathrm{~V})$ effective span $=12 \mathrm{~m}(\mathrm{VI})$ effective lover $=90 \mathrm{~mm}, \mathrm{M} 20$ concrete \& Fe 415 steel.

Step . 1 Preliminary design.
$\mathrm{bf}=\frac{\mathrm{lo}}{6}+\mathrm{bw}+6 \mathrm{D}_{\mathrm{f}} \quad \mathrm{l}_{\mathrm{o}}=\mathrm{l}_{\mathrm{e}}=12000 \mathrm{~mm}$
$=\frac{12000}{6}+350+6$ X $100=2950<\mathrm{S}=4000$
$\mathrm{h} \approx \frac{\mathrm{le}}{12}$ to $\frac{\mathrm{le}}{15}(1000$ to 800 mm$)$
Assume $\mathrm{h}=900 \mathrm{~mm}$
$\mathrm{d}_{\text {provided }}=900-90=810 \mathrm{~mm}$
Approximate $\mathrm{A}_{\mathrm{st}}=\frac{M_{u}}{0.87 f y\left(d-\frac{d_{f}}{2}\right)}=\frac{900 \times 10^{6}}{0.87 \times 415\left(810-\frac{100}{2}\right)} \quad=3279 \mathrm{~mm}^{2}$
Assume 25 mm dia bar.
No. of bars $=\frac{3279}{490} \approx 6.7$
Provide 8 bars of 25 mm dia
$\left(\mathrm{A}_{\text {st }}\right)_{\text {provided }}=8 \mathrm{X} 491=3928 \mathrm{~mm}^{2}$

$$
\mathrm{x}_{\mathrm{umax}}=0.48 \mathrm{X} 810=388.8
$$

Step. 2 N-A depth, Assume NA to be in flange.
$\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} \mathrm{b}_{\mathrm{f}} ; \mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$.
0.36 X 20 X x $_{\mathrm{u}}$ X $2950=0.87$ X 415 X 3927.
$\mathrm{x}_{\mathrm{u}}=66.75<\mathrm{D}_{\mathrm{f}}<\mathrm{x}_{\mathrm{umax}}$
hence assumed position of $\mathrm{N}-\mathrm{A}$ is correct.
Step . $3 . \quad M_{u r}=0.36 f_{c k} b_{f X_{u}}\left(d-0.42 x_{u}\right)$

$$
=0.36 \text { X } 20 \text { X } 2950 \text { X 66.75(810-0.42 X 66.75) }
$$

$$
\mathrm{M}_{\mathrm{ur}}=1108.64 \mathrm{kN}-\mathrm{m}>9.01 \mathrm{kN}-\mathrm{m} \mathrm{M}_{\mathrm{u}}
$$

Hence ok
Step. 4 Detailing
2. Design a T-beam for the following data. Span of the beam $=6 \mathrm{~m}$ (effective) \& simply supported spacing of beam $-3 \mathrm{~m} \mathrm{c} / \mathrm{c}$, thickness of slab $=120 \mathrm{~mm}$, loading on slab $-5 \mathrm{kN} / \mathrm{m}^{2}$ exclusive of self weight of slab effective cover $=50 \mathrm{~mm}$, M20 concrete \& Fe 415 steel. Assume any other data required.
3. A hall of size 9 mX 14 m has beams parallel to 9 m dimension spaced such that 4 panels of slab are constructed. Assume thickness of slab as 150 mm \& width of the beam as 300 mm . Wall thickness $=230 \mathrm{~mm}$, the loading on the slab (I) dead load excluding slab weight $2 \mathrm{kN} / \mathrm{m}^{2}$ (2) live load $3 \mathrm{kN} / \mathrm{m}^{2}$. Adopt M20 concrete \& Fe 415 steel. Design intermediate beam by $1^{\text {st }}$ principle. Assume any missing data.

$$
\begin{aligned}
& \text { * } 1 \text { inch }=25.4 \text { or } 25 \mathrm{~mm} \\
& \text { * ' } \mathrm{h} \text { ' should be in terms of } \\
& \text { multiples of inches. }
\end{aligned}
$$

Step . 1 Preliminary design
$\mathrm{S}=\frac{14.23}{4}=3.55 \mathrm{~m}$
Effective span, le $=9+\frac{2 \times 0.23}{2}=9.23 \mathrm{~m}$
Flange width, $b_{f}=\frac{\mathrm{lo}}{6}+b_{w}+6 D_{f}=9.23 / 6+0.300+6 X 0.15=2.74 \mathrm{~m}<\mathrm{S}=3.55$
$\mathrm{h} \approx \frac{\mathrm{le}}{12}$ to $\frac{\mathrm{le}}{15} \approx \frac{9230}{12}$ to $\frac{9230}{15}=769.17$ to 615.33
Let us assume $\mathrm{h}=700 \mathrm{~mm}, \mathrm{C}_{\mathrm{e}}=50 \mathrm{~mm}$.
$\mathrm{d}_{\text {provided }}=700-50=650 \mathrm{~mm}$

Loading

1. on slab
a) self weight of slab $=1 \mathrm{~m} \times 1 \mathrm{~m} \times 0.15 \mathrm{~m} \times 25=3.75 \mathrm{kN} / \mathrm{m}^{2}$
b) Other dead loads (permanent) $\quad=2 \mathrm{kN} / \mathrm{m}^{2}$
c) Live load (varying)
$=3 \mathrm{kN} / \mathrm{m}^{2}$
(It is known as imposed load) $\quad \mathrm{q}=8.759 \mathrm{kN} / \mathrm{m}^{2}$
2. Load on beam
a> From slab $=9 \mathrm{X} 3.55=31.95 \mathrm{kN} / \mathrm{m}$
b> Self weight of beam $=0.3$ X 0.55 X 1 X $25=4.125 \mathrm{kN} / \mathrm{m}$
$\downarrow \quad \searrow$ depth of web
width of beam

$$
\mathrm{w}=36 . \mathrm{D} 75 \quad 36 \mathrm{kN} / \mathrm{m}
$$

$\mathrm{M}=\frac{36 \mathrm{X} 9.23^{2}}{8}=383.37 \mathrm{kN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{u}}=1.5 \times 383.4=575 \mathrm{kN}-\mathrm{m}$.

$$
\begin{aligned}
\left(\mathrm{A}_{\text {st }}\right)_{\text {app }} . & =\frac{\mathrm{Mu}}{0.87 \mathrm{fy}\left(\mathrm{~d}-\frac{\mathrm{D}_{\mathrm{l}}}{2}\right)} \\
& =\frac{575 \times 10^{6}}{0.87 \times 415\left(650-\frac{150}{2}\right)} \\
& =2769 \mathrm{~mm}^{2}\left(\mathrm{~A}_{\text {st }}\right)_{\text {actual }}=491 \times 6=2946
\end{aligned}
$$

No. of \# 25 bars $=\frac{2769}{490}=5.65 \approx 6$ 1 ft of span \rightarrow depth is 1 inch $1 \mathrm{~m}=$ 3.28 ft

Provide 6 bars of 25 mm dia in 2 rows.
Step . $2 \quad$ N-A depth
$\mathrm{x}_{\mathrm{umax}}=0.48 \mathrm{X} 650=312 \mathrm{~mm}$
Assuming N-A to lie in flange,
$\mathrm{x}_{\mathrm{u}}=\frac{0.87 \mathrm{fy} \mathrm{Ast}}{0.36 \mathrm{fck} \mathrm{bf}}=\frac{0.87 \times 415 \times 2946}{0.36 \times 20 \times 2740}=53.91 \mathrm{~mm}<\mathrm{D}_{\mathrm{f}}<\mathrm{X}_{\mathrm{umax}}$
$\mathrm{M}_{\mathrm{ur}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{f}} \mathrm{X}_{\mathrm{u}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)$
$=0.36 \times 20 \times 2740 \times 53.91(650-0.42 \times 53.91) / 10^{6}$
$=667.23 \mathrm{kN}-\mathrm{m}$.
Design a T-beam for a simply supported span of 10 m subjected to following loading as uniformly distributed load of $45 \mathrm{KN} / \mathrm{m}$ excluding self wt of the beam by a point load at mid-span of intensity 50 KN due to a transverse beam. Assume the width of the beam=300 $\mathrm{mm} \&$ spacing of the beam=3m. Adopt M-20 concrete \&Fe 415 steel.

Sol: $\mathrm{M}=\frac{w l^{2}}{8}+\frac{p \times l}{4}$
Self cut $=1 \times 1 \times 0.3 \times 25=78 . \mathrm{dKW} / \mathrm{M}$.
$\mathrm{W}=7.5+45=52 . \mathrm{KN} / \mathrm{M}$.

Shear, Bond \& tension in RCC Beams

Shear

- Types of cracks @ mid span \rightarrow flexural crack beoz Bm is zero, SF is max
- Type of crack away from mid span \rightarrow shear f flexural crack.
- Principal tensile stress at supports_= shear stress

$$
\tau_{v}=\frac{V x(A y)}{I b} \quad \mathrm{~A}=\text { area above the point consideration }
$$

If (As) hanger<(Ast)min does not contribute to compression as in doubly reinforced beams. $(\mathrm{Ast})_{\text {min }}=\frac{0.85 b d}{f y}$

RCC - Heterogonous material \rightarrow Distribution of shear stress in complex

$$
\tau v=\frac{V x(A y)}{I b} \rightarrow \text { Normal shear stress } \tau v=\frac{v x}{b w d}
$$

$\mathrm{V}_{\mathrm{u}}=\mathrm{V}_{\mathrm{cb}}+\mathrm{V}_{\mathrm{ay}}+\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{s}}$
$\mathrm{V}_{\mathrm{u}}=\mathrm{V}_{\mathrm{cu}}+\mathrm{V}_{\mathrm{s}}$.

- Shear reinforcement \rightarrow Vertical stirrup \& Bent - up bars

Truss analogy

$$
\mathrm{V}_{\mathrm{cu}}=\tau_{\mathrm{cc}} \times \mathrm{b} \times \mathrm{d} \quad \tau_{\mathrm{c}}=\text { Design shear stress }
$$

IS-456 P-73
$\tau_{\mathrm{v}} \leq \tau_{\mathrm{cmax}}$

$\left(\mathrm{A}_{\mathrm{sv}}\right)_{\min } \geq \frac{0.4 b s v}{0.87 f y} \quad$ or $(s v) \max \leq \frac{0.87 f y \text { Asv }}{0.4 b}$
2) $\mathrm{Vs}=\mathrm{Vus}=\frac{0.87 \text { fyAsvd }}{s v}(\sin \alpha+\cos \alpha)$
3) $\mathrm{V}_{\mathrm{us}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{sv}} \sin \alpha$

No(6)

Whenever bent up bars are provided its strength should be taken as less than or equal to $0.5 \mathrm{~V}_{\text {us }}$ (shear strength of reinforcement).

Procedure for design of shear in RCC

Step; 1 From the given data calculate the shear force acting on the critical section where critical section is considered as a section at a distance 'd' from the face of the support. However in practice the critical section is taken at the support itself.

Step-2 For the given longitudinal reinforcement calculate $\mathrm{pt}=\frac{100 A s t}{b d}$, for this calculate $\mathrm{T}_{\mathrm{c}} \& \mathrm{~T}_{\mathrm{v}}$ calculate from Pg. $73 \tau \mathrm{v}=\frac{V u}{b d} ; \quad V u=$ applied shear force calculated in step 1.

If $\tau_{v}>\tau_{\text {cmax }}$ (page 73) then in crease ' d '
$\mathrm{V}_{\mathrm{cu}}=\tau_{\mathrm{c}} \mathrm{bd}$
If $V_{c u} \leq V_{u}$, Provide min. vertical stirrup as in page 48, clause 26.5.1.6 ie(Sv) $)_{\max } \leq$ $\frac{0.87 \text { fyAsv }}{0.4 b}$

Else calculate $\mathrm{V}_{\mathrm{us}}=\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{cu}}$
Step 3 Assume diameter of stirrup \& the no. of leg to be provided \& accordingly calculates $\mathrm{A}_{\text {sv }}$ then calculate the spacing as given in P-73 clause 40.4 (IS-456) This should satisfy codal requirement for $(\mathrm{Su}) \mathrm{Max}$. If shear force is very large then bent-up bars are used such that its strength is less than or equal to calculated $\mathrm{V}_{\text {us }}$.

1. Examine the following rectangular beam section for their shear strength \& design shear reinforcement according to $\mathrm{IS} 456-2000$. $\mathrm{B}=250 \mathrm{~mm}, \mathrm{~s}=500 \mathrm{~mm}, \mathrm{Pt}=1.25, \mathrm{~V}_{\mathrm{u}}=200 \mathrm{kN}$, M20 concrete \& Fe 415 steel
Step 1: Check for shear stress
Nominal shear stress, $\tau \mathrm{v}=\frac{200 \times 10^{3}}{250 \times 500}=\frac{V u}{b d}=1.6 \mathrm{~N} / \mathrm{mm}^{2}$
From table 19, $\mathrm{p}=73, \tau_{\mathrm{c}}=0.67 \mathrm{~N} / \mathrm{mm}^{2}$.

From table 20, $\mathrm{p}=73$, $\tau_{\mathrm{cmax}}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$.

$$
\tau_{\mathrm{c}}<\tau_{\mathrm{v}}<\tau_{\mathrm{cmax}} .
$$

The depth is satisfactory \& shear reinforcement is required.

Step 2. Shear reinforcement

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cu}}=\tau_{\mathrm{c}} \mathrm{bd}=\frac{0.67 \times 250 \times 500}{1000}=83.75 \mathrm{KN} . \\
& \mathrm{V}_{\mathrm{us}}=\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{cu}}=200-83.75=116.25 \mathrm{KN}
\end{aligned}
$$

Assume 2 leg - 10 mm dia stirrups, $\mathrm{A}_{\mathrm{sv}}=2 \times \frac{\pi}{4} \times 10^{2}=157 \mathrm{~mm}^{2}$.
Spacing of vertical stirrups, obtained from IS456-2000
$S v=\frac{0.87 f y A s v d}{V u s}=\frac{0.87 \times 415 \times 157 \times 500}{116.25 \times 10^{3}}=243.8=240 \mathrm{mmc} / \mathrm{c}$

Check for maximum spacing
i) $\mathrm{S}_{\mathrm{vmax}}=\frac{0.87 \mathrm{Asvfy}}{0.4 b}=\frac{0.87 \times 157 \times 415}{0.4 \times 250}=566.8 \mathrm{~mm}$
ii) $0.75 \mathrm{~d}=0.75 \times 500=375 \mathrm{~mm}$.
iii) 300 mm

$$
S_{\mathrm{vmax}}=300 \mathrm{~mm}(\text { Least value })
$$

2. Repeat the previous problem for the following data
1) $\mathrm{b}=100 \mathrm{~mm}, \mathrm{~d}=150 \mathrm{~mm}, \mathrm{P}_{\mathrm{t}}=1 \%, \mathrm{~V}_{\mathrm{u}}=9 \mathrm{kN}$, M20 concrete \& Fe 415 steel
2) $\mathrm{b}=150 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}, \mathrm{P}_{\mathrm{t}}=0.75 \%, \mathrm{~V}_{\mathrm{u}}=150 \mathrm{KN}, \mathrm{M} 25$ concrete \& Fe 915 steel
3) $\mathrm{b}=200 \mathrm{~mm}, \mathrm{~d}=300 \mathrm{~mm}, \mathrm{P}_{\mathrm{t}}=0.8 \%, \mathrm{Vu}=180 \mathrm{kN}$, M20 concrete \& Fe 415 steel.
3. Design the shear reinforcement for a T-beam with following data: flange width $=$ 2000 mm . Thickness of flange $=150 \mathrm{~mm}$, overall depth $=750 \mathrm{~mm}$, effective cover $=$ 50 mm , longitudinal steel $=4$ bars of 25 mm dia, web width $=300 \mathrm{~mm}$ simply supported span $=6 \mathrm{~m}$, loading $=50 \mathrm{kN} / \mathrm{m}$, UDL throughout span. Adopt M20 concrete \& Fe 415 steel

Step; [Flange does not contribute to shear it is only for BM]

Step -1 Shear stress
$\mathrm{V}=\frac{50 \times 6}{2}=150 \mathrm{KN}$
$\mathrm{Vu}=1.5 \mathrm{X} 150=225 \mathrm{KN}$
$\tau_{v}=\frac{v_{u}}{b_{w} d}=\frac{225 \times 10^{3}}{300 \times 700}=1.07$
$\mathrm{A}_{\mathrm{st}}=4 \times 491=1964 \mathrm{~mm}^{2}$.
$\operatorname{Pg}-73$
$0.75 \rightarrow 0.56$
$\mathrm{Pt}=\frac{100 \times 1964}{300 \times 700}=0.93$
$1.00 \rightarrow 0.62$

- $\tau_{c}=0.56+\frac{(0.62-0.56)}{(1.00-0.75)}(0.93-0.75)$
$=0.6 \mathrm{~N} / \mathrm{mm}^{2}$.

From table 20, $\quad \max =2.8$

Step-2 Design of shear reinforcement
$\mathrm{V}_{\mathrm{cu}}=\tau_{\mathrm{c}} \mathrm{b}_{\mathrm{w}} \mathrm{d}=\frac{0.6 \times 300 \times 700}{1000}=126 \mathrm{KN}$
$V_{u s}=V_{u}-V_{\text {cu }}=225-126=99 \mathrm{KN}$
Assume 2-L, 8 dia stirrups $\mathrm{A}_{\mathrm{su}}=2 \times \frac{\pi}{4} \times 8^{2}=100 \mathrm{~mm}^{2}$
Spacing of vertical stirrups,
$\mathrm{S}_{\mathrm{v}}=\frac{0.8 f y A_{\text {su }} d}{v_{u s}}=\frac{0.87 \times 415 \times 100 \times 700}{99 \times 1000}=255.28=250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Check for Max spacing

i) $\operatorname{Svmax}=\frac{0.87 f_{y} A_{s u}}{0.4 b_{w}}=\frac{0.87 \times 415 \times 100}{0.4 \times 300}=300.87 \mathrm{~mm}$
ii) $0.75 \mathrm{~d}=0.75 \times 700=525 \mathrm{~mm}$.
iii) 300 mm
$\mathrm{S}_{\mathrm{v}}<\mathrm{S}_{\mathrm{vmax}} \quad \therefore$ provide $21-\# 8 \mathrm{~mm}$ @ 250c/c

Step - 3 curti cement

From similar triangle
$\frac{225}{3}=\frac{126}{x} \quad \chi \quad x=1.68 \mathrm{~m}=1.6 \mathrm{~m}$.
\therefore provide (i) 2L-38@ $250 \mathrm{c} / \mathrm{c}$ for a distance of 1.4 m
(ii) $2 \mathrm{~L}-\mathrm{\#} 8$ @ $300 \mathrm{c} / \mathrm{c}$ for middle 3.2 m length

Step. 4 Detailing
Use 2- \#12mm bars as hanger bars to support stirrups as shown in fig

A reinforced concrete beam of rectangular action has a width of 250 mm \& effective depth of 500 mm . The beam is reinforced with $4-\# 25$ on tension side. Two of the tension bars are bent up at 45° near the support section is addition the beam is provided with 2 legged stirrups of 8 mm dia at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ near the supports. If $\mathrm{f}_{\mathrm{ck}}=25 \mathrm{Mpa} \& \mathrm{f}_{\mathrm{y}}=415 \mathrm{Mp} 2$. Estimate the ultimate shear strength of the support s / n

$$
\begin{aligned}
& \left(\mathrm{A}_{\mathrm{st}}\right)_{\mathrm{xx}}=2 \times \frac{\pi}{4} \times 25^{2}=982 \mathrm{~mm}^{2} \\
& \mathrm{P}_{\mathrm{t}}=\frac{100 \times 982}{250 \times 500}=0.78 \% \\
& \mathrm{P}_{\mathrm{t}}=0.75 \rightarrow 0.57 \\
& \quad \mathrm{P}_{\mathrm{t}}=1.00 \rightarrow 0.64 \\
& \text { For } \mathrm{P}_{\mathrm{t}}=0.78 \Rightarrow \tau_{\mathrm{c}}=0.57+\frac{(0.64-0.57)}{(1-0.75)}(0.78-0.75) \\
& \quad \tau_{\mathrm{c}}=0.5784 .
\end{aligned}
$$

1) Shear strength of concrete
$\mathrm{V}_{\mathrm{cu}}=\tau_{\mathrm{c}} \mathrm{bd}=\frac{0.5784 \times 250 \times 500}{1000}=72.3 \mathrm{KN}$.
2) Shear strength of vertical stirrups

$$
\left(\mathrm{A}_{\text {sv }}\right)_{\text {stirrup }}=2 \times \frac{\pi}{4} \times 8^{2}=100 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
\left(\mathrm{V}_{\text {su }}\right)_{\text {st }} & =\frac{0.87 f y A_{\text {su }} d}{s u} \quad S u=150 \mathrm{~mm} \\
& =\frac{0.87 \times 415 \times 100 \times 500}{150}=120.35 \mathrm{KN}
\end{aligned}
$$

3) Shear strength of bent up bars

$$
\begin{aligned}
& \left(\mathrm{A}_{\text {su }}\right)_{\text {bent }}=2 \times \frac{\pi}{4} \times 25^{2}=982 \mathrm{~mm}^{2} \\
& \left(\mathrm{~V}_{\text {us }}\right)_{\text {bent }}=0.87 \mathrm{fy}\left(\mathrm{~A}_{\text {su }}\right)_{\text {bent }} \sin \propto \\
& \quad=\frac{0.87 \times 415 \times 982 \times \sin 45}{1000} \\
& =250.7 \mathrm{KN} .
\end{aligned}
$$

$\mathrm{V}_{\mathrm{u}}=\mathrm{V}_{\mathrm{cu}}+\left(\mathrm{V}_{\mathrm{us}} /_{\mathrm{st}}+\left(\mathrm{V}_{\mathrm{us}}\right)_{\text {bent }}\right.$

$$
=72.3+120.35+250.7
$$

$\mathrm{V}_{\mathrm{u}}=443.35 \mathrm{KN}$
5. A reinforced concrete beam of rectangular $\mathrm{s} / \mathrm{n} 350 \mathrm{~mm}$ wide is reinforced with 4 bars of 20 mm dia at an effective depth of $550 \mathrm{~m}, 2$ bars are bent up near the support s / n. The beam has to carry a factored shear force of 400 kN . Design suitable shear reinforcement at the support s / n sing M20 grade concrete \& Fe 415 steel.
$\mathrm{V}_{\mathrm{u}}=400 \mathrm{KN}, \mathrm{b}=350 \mathrm{~mm}, \mathrm{~d}=550 \mathrm{~mm}, \mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpas}$
$\mathrm{f}_{\mathrm{y}}=415 \mathrm{Mpa},\left(\mathrm{A}_{\mathrm{st}}\right)_{\mathrm{xx}}=2 \times 314=628 \mathrm{~mm}^{2}$.
Step - 1 Shear strength of concrete
$\mathrm{Pt}=\frac{100 \times 628}{350 \times 550}=0.32 \% \quad$ From Table $-19 \quad \tau_{c}=0.4 M p a$.
$\tau_{c}=\frac{V u}{b d}=\frac{400 \times 10^{3}}{350 \times 550}$
$=2.07 \mathrm{Mpa}$
$\tau_{\mathrm{c}}<\tau_{\mathrm{v}}<\tau_{\mathrm{cmax}}$.
\therefore Design of shear reinforcement is required.

Step -2 Shear strength of concrete
$\mathrm{Vcu}=\tau_{\mathrm{c}} \mathrm{bd}=\frac{0.4 \times 350 \times 550}{1000}=77 \mathrm{KN}$.
$\mathrm{V}_{\mathrm{us}}=\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{cu}}=323 \mathrm{KN}$
Step -3 Shear strength of bent up bar.
$\left(A_{\text {sv }}\right)_{\text {bent }}=2 \times 314=628 \mathrm{~mm}^{2}$.
$\left(\mathrm{V}_{\mathrm{us}}\right)_{\text {bent }}=0.87 \mathrm{f}_{\mathrm{y}}\left(\mathrm{A}_{\text {sv }}\right)_{\text {bent }} \sin \propto$.
$=\frac{0.87 \times 415 \times 628 \times \sin 45}{1000}$
$=160.3 \mathrm{KN}\left[<\frac{V_{u s}}{2}=161.5\right]$
NOTE: If $\left(\mathrm{V}_{\mathrm{us}}\right)_{\text {bent }}>\frac{V_{u s}}{2}$ then $\left(\mathrm{V}_{\mathrm{us}}\right)_{\text {bent }}=\frac{V_{u s}}{2}$
Step - 4 Design of vertical stirrups
$\left(V_{u s}\right)_{s t}=V_{u s}-\left(V_{\text {us }}\right)_{\text {bent }}=323-160.3=162.7 \mathrm{KN}$.
Assuming 2L-\#8 stirrups
$\left(\mathrm{A}_{\mathrm{sv}}\right)_{\mathrm{st}}=2 \times \frac{\pi}{4} \times 8^{2}=100 \mathrm{~mm}^{2}$
$\mathrm{S}_{\mathrm{v}}=\frac{0.87 f y A_{s v} d}{\left(v_{u s}\right) s t}=\frac{0.87 \times 415 \times 100 \times 550}{162.7 \times 1000}=122 \mathrm{~mm} \frac{c}{c}=120 \mathrm{~mm}$
Provide 2L-\#8@120 c/c
$S_{\mathrm{vmax}}=\frac{0.87 f y \mathrm{Asv}}{0.4 b}=257.89 \mathrm{~mm}$.
$0.75 \mathrm{~d}=412.5 \mathrm{~mm}, 300 \mathrm{~mm}$.
$S_{\mathrm{vmax}}=258 \mathrm{~mm}$

Shear strength of solid slab

Generally slab do not require stirrups except in bridges. The design shear stress in slab given isn table 19 should b taken as ' $\mathrm{k} \tau_{\mathrm{c}}$ ' where ' k ' is a constant given in clause 90.2.1.1
\rightarrow The shear stress $\tau_{\mathrm{c}}<\mathrm{k} \tau_{\mathrm{c}}$ hence stirrups are not provided.
\rightarrow Shear stress is not required Broz thickness of slab is very less.

Self study: Design of beams of varying depth Page: 72, clause 40.1.1

Use of SP-16 for shear design

SP - 16 provides the shear strength of concrete in table 61 Pg 178 table $62(179)$ provides $\left(\mathrm{V}_{\mathrm{us}}\right)_{\mathrm{st}}$ for different spacing of 2 legged stirrups of dia $6,8,10 \& 12 \mathrm{~mm}$. Here it gives the value of $\frac{v_{u s}}{d}$ in $\mathrm{kN} / \mathrm{cm}$ where ' d ' is in cm . Table $63, \operatorname{Pg} 179$ provides shear strength of 1 bent up bar of different dia.

Procedure
Step- 1; Calculate $=\tau_{\mathrm{c}}=\frac{V_{u}}{b d} \&$ obtain τ_{c} from table $61 \&$ also obtain $\tau_{\mathrm{cmax}} \quad$ from table $20, \mathrm{Pg}$ 73 -IS956 If $\tau_{c}<\tau_{c}<\tau_{c \max }$ then design of shear reinforcement is necessary.

Step - $2 \quad V_{c u}=\tau_{\mathrm{c}} \mathrm{bd}$ $\mathrm{V}_{\mathrm{us}}=\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{cu}}$

Assuming suitable stirrup determine the distance for $\frac{v_{u s}}{b}$ in $\mathrm{kN} / \mathrm{cm}$.
H.W Design all the problems using SP-16 solved earlier.

Bond \& Anchorages

$\mathrm{T}=\frac{\pi}{4} \times \varnothing^{2} \times \sigma_{s}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{T}$
$\operatorname{ld} \tau_{\mathrm{bd}}=\frac{\pi}{4} \times \emptyset^{2} \times \sigma_{s}$
$\mathrm{ld}=\frac{\sigma_{s} \emptyset}{4 \tau_{b d}}$
$\tau_{\mathrm{bd}}=$ Anchorage bond stress

$$
\tau_{\mathrm{bf}}=\text { flexural bond stress }
$$

For CTDs HYSD bars, flexural bond stress is ignored bozo of undulations on surface of steel.
$\tau_{\mathrm{bf}}=\frac{V}{\sum o j d} \quad \sum o=$ summation of permeter of bars

$$
\mathrm{Z}=\text { lever arm }
$$

Codal requirement

$$
\frac{M_{1}}{V}+l o \geq l d \rightarrow p g-44 \rightarrow \text { clause 26.2.3.3, } P-42
$$

Where $\mathrm{ld}=\frac{\sigma_{s} \emptyset}{4 \tau_{b d}} ; \quad \sigma_{\mathrm{s}}=$ tensile stress in steel

$$
\tau_{\mathrm{bd}}=\text { design bond stress. }
$$

The value of this stress for different grades of steel is given in clause 26.2.1.1 $\rightarrow \mathrm{Pg}-93$ of code for mild steel bar. These values are to be multiplied by 1.6 for deformed bars. In case of bar under compression the above value should be increased by $25 \% \sigma_{\mathrm{s}}=0.87 \mathrm{fy}$ for limit state design. If lo is insufficient to satisfy (1), then hooks or bents are provided. In MS bars Hooks are essential for anchorage

$$
\begin{aligned}
& \operatorname{Min}=4 \varnothing \\
& \mathrm{~K}=2 \text { for MS bars } \\
& =4 \text { for CTD bars }
\end{aligned}
$$

Hook for Ms bars
$(\mathrm{K}+1) \varnothing$

> Standard 90° bond
> Pg -183 fully stressed $=0.87$ fig
> 1. Check the adequacy of develop. Length for the simply supported length with the following data.
> (IV) c/s $=25 \times 50 \mathrm{~cm}$ (ii) span=5m (iii) factored load excluding self wt $=160 \mathrm{KN} / \mathrm{m}$. iv) Concrete M20 grade, steel Fe 415 grade. (v) Steel provided on tension zone. 8 bars of 20 mm dia.

Solve: $\mathrm{C}_{\mathrm{e}}=50 \mathrm{~mm}, \mathrm{~h}=500 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}$

$$
\begin{aligned}
\begin{aligned}
\mathrm{q}_{\text {self }}= & 0.25 \times 0.5 \times 1 \times 25 \\
& =3.125 \mathrm{KN} / \mathrm{m}
\end{aligned} \\
\begin{aligned}
\mathrm{q}_{\mathrm{uself}} & =1.5 \times 3.125=4.6875 \mathrm{KN} / \mathrm{m} \\
\text { Total load } & =60+4.6875 \\
& =64.6875 \mathrm{KN} / \mathrm{m}
\end{aligned} \\
\begin{aligned}
& \mathrm{V}_{\mathrm{u}}=\frac{64.6875 \times 5}{2}=161.72 \mathrm{KN} \\
& \mathrm{X}_{\mathrm{ulim}}=0.48 \mathrm{~d}=0.48 \times 450=216 \mathrm{~mm} \\
& \mathrm{M}_{\mathrm{ulim}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}} \mathrm{~b}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right) 10^{6} \\
&=139.69 \mathrm{kN}-\mathrm{m}
\end{aligned}
\end{aligned}
$$

Let $W s=300,1_{o}=150 \mathrm{~mm}$.

$$
\begin{aligned}
& \frac{M_{1}}{V}+1_{0}=\frac{139.69}{161.72}+0.15=1.01 \mathrm{~m} \\
& \mathrm{Ld}=\frac{\varnothing \sigma_{2}}{4 J_{b d}} \quad \sigma_{2}=0.87 f y
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{\mathrm{bd}}=1.6 \times 1.2=1.92 \quad \text { Table R43 } \\
& 1_{\mathrm{d}}=\frac{20 \times 0.87 \times 415}{4 \times 1.92 \times 1000}=0.94 \mathrm{~m} \\
& \frac{M_{1}}{V}+l_{o}>l d ; \text { hence safe }
\end{aligned}
$$

2. A cantilever beam having a width of $200 \mathrm{~mm} \&$ effective depth 300 mm , supports a VDL hug total intensity 80 KN (factored) 4 nos of 16 mm dia bars are provided on tension side, check the adequacy of development length $\left(l_{d}\right)$, M20 \& Fe 415.

Design for torsion

$\frac{I}{I_{p}}=\frac{G o}{l}=\frac{f s}{R} \Rightarrow f S=\frac{T R}{I P}$

$$
\tau_{\operatorname{tmax}}=\frac{T}{k b^{2} D} \quad \text { or } \frac{T}{k b^{2} h}
$$

For the material like steel

Principal stresses all 4 faces reinforcement

Eg. Chejja or sunshade L-window

Cross - cantilever
Eg- for Secondary torsion

Eg. (1) Plan of Framed Structure
Primary torsion
(3) Ring beam in elevated tank
(2) Arc of a circle

IS-456 $\rightarrow \mathrm{Pg}-79$ Procedure
(1) Flexure \& Torsion
$\mathrm{M}_{\mathrm{e} 1}=\mathrm{M}_{\mathrm{u}}+\mathrm{M}_{\mathrm{T}}$
$\mathrm{M}_{\mathrm{T}}=\mathrm{T}_{\mathrm{u}}\left(\frac{1+d / b}{1.7}\right) \quad D=h$
$D=$ Overall depth, $b=$ breadth of beam
Provide reinforcement for Mt in tension side
If $\mathrm{M}_{\mathrm{T}}>\mathrm{M}_{\mathrm{u}}$ provide compression reinforcement for

(2) Shear \& Torsion

$\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{u}}+\frac{1.6 T u}{b}$
$\tau_{\mathrm{v}}=\frac{v_{e}}{b d} ;$ For safe design $\tau_{v}>\tau_{c}$ design shear reinforcement.

Shear reinforcement

$$
\begin{aligned}
\mathrm{A}_{\mathrm{sv}} & =\frac{T_{u} s_{v}}{b d, 0.87 f y}+\frac{v_{u} s_{v}}{25 d_{1}(0.87 f y)} \\
& =\frac{\left(\tau_{v e}-\tau_{c)} b s v\right.}{0.87 f y}
\end{aligned}
$$

Pg. $48 \rightarrow$ clause 26.5.1.7
$\mathrm{S}_{\mathrm{Vmax}}$ is least of
i) X_{1}
ii) $\frac{x 1+y 1}{4}$
iii) 300 mm
$\mathrm{A}_{\mathrm{sw}}>\frac{0.1}{100} \times b \times d$

1. Design a rectangular reinforced concrete beam to carry a factored BM of $200 \mathrm{KN}-\mathrm{m}$, factored shear force of 120 kN \& factored torsion moment of $75 \mathrm{KN}-\mathrm{m}$ Assume M-20 concrete \& Fe 415 steel

Sol: $\mathrm{M}_{\mathrm{u}}=20 \mathrm{KN}-\mathrm{m}, \mathrm{T}_{\mathrm{u}}=75 \mathrm{KN}-\mathrm{m}, \mathrm{V}_{\mathrm{u}}=120 \mathrm{~K} . \mathrm{N}$.
Step $-1=$ Design of BM \& Torsion
Assume the ratio $\frac{D}{b}=2$
$\mathrm{M}_{\mathrm{T}}=\frac{T_{u}\left(1+\frac{D}{b}\right)}{l_{o} 7}=\frac{75(1+2)}{1.7}=132.35 K N-m$.

No compression reinforcement design is necessary
$\mathrm{M}_{\mathrm{T}}<\mathrm{M}_{\mathrm{u}}$
$\mathrm{M}_{\mathrm{e} 1}=\mathrm{M}_{\mathrm{T}}+\mathrm{M}_{\mathrm{u}}=200+132.35=332.35 \mathrm{KN}-\mathrm{m}$.
$\mathrm{d}_{\text {bal }}=\sqrt{\frac{M_{e 1}}{\theta_{u m} b}}=\sqrt{\frac{332.35 \times 10^{6}}{2.76 \times 300}}=633.5 \mathrm{~mm}$.
Assume $b=300 \mathrm{~mm}, \theta_{\text {lim }}=2.76$
Assuming overall depth as 700 mm \& width as 350 mm \& effective cover $=50 \mathrm{~mm}$.
D Provided $=700-50$

$$
=650 \mathrm{~mm}
$$

Area of steel required for under reinforced section,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{t}} & =\frac{50 f_{c k}}{f y}\left[1-\sqrt{1 \frac{4.6 M_{c 1}}{f c k b d^{2}}}\right] \\
& =\frac{50 \times 20}{415}\left[1-\sqrt{1 \frac{4.6 \times 332.35 \times 10^{6}}{20 \times 350 \times 650^{2}}}\right] \\
& =0.73<0.96
\end{aligned}
$$

($\mathrm{p}_{\mathrm{t}} \mathrm{lim}$)
$\therefore \mathrm{A}_{\mathrm{st}}=\frac{0.73 \times 350 \times 650}{100}=1660.75 \mathrm{~mm}^{2}$
Assume 25 mm dia bars $=\frac{1660.75}{4.91}=3.38 \approx 4$
Provide 4 bars -\#25 dia
$\left(\mathrm{A}_{\mathrm{st}}\right)$ provided $=1963 \mathrm{~mm}^{2}$

Step - 2 Design for shear force \& torsion
$\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{u}}+\frac{1.6 T_{u}}{b}$
$\mathrm{V}_{\mathrm{e}}=120+\frac{1.6 \times 75}{0.35}=462.86 \mathrm{KN}$
$\tau_{\mathrm{ve}}=\frac{462.86 \times 10^{3}}{350 \times 650}=2.03<2.8\left(\mathrm{~T}_{\mathrm{cmax}}\right) \mathrm{P}-73$
$\mathrm{Pt}=\frac{4 \times 491}{350 \times 650} \times 100=0.86 \quad \tau_{v e}>\tau_{c}$
Table - $19 \quad \tau \mathrm{c}=0.56+\frac{(0.62-0.56)}{(1.00-0.75)}(0.86-0.56)=0.58 \mathrm{~N} / \mathrm{mm}^{2}$
Assuming $2-$ legged $=12 \mathrm{~mm}$ dia;
$\mathrm{A}_{\mathrm{su}}=2 \times \frac{\pi}{4} \times 12^{2}=226 \mathrm{~mm}^{2}$
From IS-456;Pg-75
$S v=\frac{0.87 f y A_{s v}}{\frac{T_{u}}{b_{1} d_{1}}+\frac{v_{u}}{2.5 d_{1}}}$
$\mathrm{b}_{1}=275 \mathrm{~mm}, \mathrm{~d}_{1}=600 \mathrm{~mm}$
$\mathrm{y}_{1}=600+25+2 \times 6=637 \mathrm{~mm}$
$\mathrm{x}_{1}=275+25+2 \times 6=312 \mathrm{~mm}$.
$\mathrm{x}_{1} \mathrm{y}_{1} \rightarrow$ dist of centre of stirrups.
Provide 2-\#12@ top as hanger bars
$\mathrm{Sv}=\frac{0.87 \times 415 \times 226}{\frac{75 \times 10^{6}}{275 \times 600}+\frac{120 \times 10^{3}}{2.5 \times 600}}=152 \approx 150 c / c$
Check

1. $\mathrm{A}_{\mathrm{sv}}>\frac{\left(\tau_{v e}-\tau_{c}\right) s v b}{0.87 f y}=\frac{(2.03-0.58) 150 \times 350}{0.87 \times 415}$
$226>210.84$
2. $S_{v m a x}$ a) $x_{1}=312 \mathrm{~mm}$
b) $\frac{x_{1}+y_{1}}{4}=\frac{312+637}{4}=237.25$
c) 300 mm
d) $0.75 \mathrm{~d}=487.5$

As $\mathrm{D}=\mathrm{h}>450$, provide side face reinforcement
$\mathrm{A}_{\mathrm{sw}}=\frac{0.1}{100} \times 350 \times 650=227 \mathrm{~mm}^{2}$
Provide 2-\#16 bars $\left(\mathrm{A}_{\mathrm{st}}=400 \mathrm{~mm}^{2}\right)$ as side face
2. Repeat the same problem with $\mathrm{Tu}=150 \mathrm{KN}-\mathrm{m}$ \& other data remain same

Solve $\mathrm{M}_{\mathrm{u}}=200 \mathrm{KN}-\mathrm{m}, \mathrm{T}_{\mathrm{u}}=150 \mathrm{KN}-\mathrm{m}, \mathrm{V}_{\mathrm{u}}=120 \mathrm{KN}$

Step - 1 Design of EM \& torsion

Assume the ratio $\mathrm{D} / \mathrm{b}=2$.
$\mathrm{M}_{\mathrm{T}}=\frac{T_{u}\left(1+\frac{d}{b}\right)}{1.7}=\frac{150(1+2)}{1.7}=264.70 \mathrm{KN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{T}}>\mathrm{M}_{\mathrm{u}}$ Compression reinforcement is required.
$\mathrm{M}_{\mathrm{G}}=\mathrm{M}_{\mathrm{T}}+\mathrm{M}_{\mathrm{u}}=264.7+200=4.64 .7 \mathrm{KN}-\mathrm{m}$
$\mathrm{d}_{\mathrm{bal}}=\sqrt{\frac{M_{e 1}}{\theta_{\text {lim }} b}}=\sqrt{\frac{464.7 \times 10^{6}}{2.76 \times 300}=749.15 \mathrm{~mm}}$
Assume $\mathrm{b}=300 \mathrm{~mm}, \theta_{\mathrm{lim}}=2.76$.
Assuming over al depth as 800 mm \& width as 400 mm \& effective cover $=50 \mathrm{~mm}$.
D provided $=800-50=750 \mathrm{~mm}$
Area of steel required for under reinforced section,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=\frac{50 f c k}{f y}\left[1-\sqrt{\frac{4.6 M_{e 1}}{f c k b d^{2}}}\right] \\
& =\frac{50 \times 20}{415}\left[1-\sqrt{\frac{4.6 \times 464.7 \times 10^{6}}{20 \times 400 \times 750^{2}}}\right] \\
& \mathrm{P}_{\mathrm{t}}=0.66<0.96\left(\mathrm{p}_{\mathrm{tlim}}\right)
\end{aligned}
$$

Assume 25 mm dia bars $=\frac{2280}{491}=5.86 \approx 6$.
Provide 6 bars - \#25 dia
$\mathrm{A}_{\mathrm{st} 2}=255.99$
$\mathrm{A}_{\mathrm{st}}=3135.99 \Rightarrow 7-\# 25$.
$\mathrm{M}_{\mathrm{e} 2}=264.7-200=64.7 \mathrm{KN}-\mathrm{m}$.
$\mathrm{A}_{\mathrm{sc}}=\frac{M_{e 2}}{f_{s c}(d-d)}=260.95 \quad \quad f s c=\frac{d^{1}}{d}=0.066$ from graph
$f s c=354.2$
$\mathrm{A}_{\mathrm{st1}}=\frac{p_{t} b d}{100}, \mathrm{~A}_{\mathrm{st2}}=\frac{f_{s c} A_{s c}}{0.87 f y} ; A_{s t 1}+A_{s t 2}=A_{s t}$
$\mathrm{A}_{\mathrm{st}}=\mathrm{kb}$ of bars

Step-2 Design for shear force torsion
$\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{u}}+\frac{1.6 T_{u}}{b}$
$=120+\frac{1.6 \times 150}{0.4}=720 \mathrm{KN}$.
$\tau_{\mathrm{ve}}=\frac{720 \times 10^{3}}{400 \times 750}=2.4<2.8\left(\tau_{c \max }\right) P-73$
$\mathrm{P}_{\mathrm{t}}=0.98 \quad \tau_{\mathrm{c}}=0.61$
Assuming 2 legged 12 mm dia
$\mathrm{A}_{\mathrm{sv}}=2 \times \frac{\pi}{4} \times 12^{2}=226 \mathrm{~mm}^{2}$
From IS-456, $\mathrm{P}_{\mathrm{g}}-75$
$\mathrm{S}_{\mathrm{v}}=\frac{0.87 f y A s v}{\frac{T_{u}}{b_{1} d_{1}}+\frac{V u}{2.5 d_{1}}}$

(Un factored load) Working load

1. Deflection \quad Span to effective depth ratio Calculation

$$
\begin{aligned}
& \mathrm{y}_{\max }=\frac{5}{384} \frac{w l^{4}}{E I} \\
& \operatorname{ymax} \leq \frac{l}{250} \quad \text { 'N\& } \mathrm{mm}^{\prime}
\end{aligned}
$$

As control of deflection by codal provision for $1 / \mathrm{d}$ ratio

Cause 23 .2.1 Pg - 37 of IS 456-2000

Type of beam	$1 /$ d ratio		
		Span, 1 $\leq 10 \mathrm{~m}$	Span>10m
	Cantilever beam	7	Should be calculated
ii)	Simply supported beam	20	$\frac{20 \times 10}{\text { span }}$
iii)	Continuous beam	26	$\frac{26 \times 10}{\text { span }}$

Effect on 1/d ratio

1. Tension reinforcement : $>1 \%$

Pg - 38; fs $=0.58 \mathrm{fy} \frac{\text { (Ast)req }}{\text { (Ast) prov }}$
SP-24 \rightarrow Explanatory hand look
$\mathrm{M}_{\mathrm{ft}}=\left[0.225+0.003225 \mathrm{f}_{\mathrm{s}}+0.625 \log _{10}\left(\mathrm{p}_{\mathrm{t}}\right)\right]^{-1} \leq 2$
2. Compression reinforcement.
$\operatorname{Mfc}=\left[\frac{1.6 p c}{p c+0.275}\right] \leq 1.5$
3. Flange action or effect

$$
\begin{aligned}
\mathrm{M}_{\mathrm{fl}} & =0.8 \text { for } \frac{b w}{b f} \leq 0.3 \\
& =0.8+\frac{2}{7}\left[\frac{b w}{b f}-0.3\right] \text { for } \frac{b w}{b f}>0.3 \\
\frac{l}{d}= & m_{f t} \times m_{f c} \times m_{f l} \times\left(\frac{l}{d}\right) \text { basic }
\end{aligned}
$$

Design

1. Flexure + torsion
2. Check for shear + Torsion, bond \& Anchorage
3. Check for deflection
4. A simply supported R-C beam of effective span 6.5 m has the C / S as 250 mm wide by 400 mm effective depth. The beam is reinforced with 4 bars of 20 mm dia at the tension side \& 2-bars of 16 mm dia on compression face. Check the adequacy of the beam with respect to limit state deflection, if M20 grade concrete \& mild steel bars have been used.
$\mathrm{B}=250 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}, \mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpa}, \mathrm{f}_{\mathrm{y}}=250 \mathrm{Mpa}$
$\mathrm{A}_{\mathrm{st}}=4 \times \frac{\pi}{4} \times 20^{2}=1256 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{sc}}=2 \times \frac{\pi}{4} \times 16^{2}=402 \mathrm{~mm}^{2}$
$\mathrm{P}_{\mathrm{t}}=\frac{1256 \times 100}{250 \times 400}=1.256$
$\mathrm{P}_{1}=\frac{402 \times 100}{250 \times 400}=0.402$
From Pg - $37,(1 / \mathrm{d})_{\text {basic }}=20$
$\mathrm{f}_{\mathrm{s}}=0.58 \times 250 \times 1=145$
$\mathrm{m}_{\mathrm{ft}}=\left[0.225+0.003225 \times 145+0.625 \log _{10}(1.256)\right]^{-1}=1.325$
$\mathrm{m}_{\mathrm{fc}}=\left[\frac{1.6 \times 0.402}{0.402+0.275}\right]=1.12($ graph $)$
$\mathrm{m}_{\mathrm{fl}}=1$ (rectangular section)
$\left(\frac{l}{d}\right) 0$ Renquired $=1.325 \times 1.12 \times 1 \times 20=29.79$
Check
$\left(\frac{l}{d}\right)$ provided $=\frac{6500}{400}=16.25<29.79 ;$ safe
2) Check the adequacy of a T-beam with following details (i) Web width (wb) $=300 \mathrm{~mm}$, (ii) Effective depth (d) $=700 \mathrm{~mm}$ (iii) flange width (bf) $=2200 \mathrm{~mm}$ (iv) effective span of simply supported beam $(1)=8 \mathrm{~m}$ (v) reinforcement a) tension reinforcement - 6bars of 25 dia b) compression reinforcement - 3 bars of 20 dia (vi) Material M25 concrete \& Fe 500 steel.

Deflection calculation

Short term deflection
Long term deflection (shrinkage, creep)

1. Short term deflection

$\mathrm{Ec}=5000 \sqrt{f c k} ; p g-16$, cluse 6.2.3.1.
Slope of tangent drawn @ origin \rightarrow Tangent modulus
Slope of tangent drawn @ Specified point \rightarrow secant Modulus 50\% of Material $\mathrm{I}_{\mathrm{gr}}=\frac{b h^{3}}{12}$ For elastic; Ief \rightarrow cracked section

Pg. $88 \mathrm{I}_{\mathrm{eff}}=\frac{I r}{1.2 \frac{M r}{M} \frac{Z}{d}\left(1-\frac{x}{d}\right) \frac{b w}{b}} ; I_{r} \leq I_{\text {eff }} \leq I_{\text {gross }}$
$I_{r}=$ Moment of inertia of cracked section
$\mathrm{M}_{\mathrm{r}}=$ cracking Moment $=$

- $\mathrm{NA} \rightarrow$ stress is zero
- $\mathrm{CG} \rightarrow$ It is point where the wt. of body is concentrated
- $\mathrm{Y}_{\mathrm{t}} \neq \mathrm{x}$
- $\mathrm{M}=$ Max. BM under service load: $\mathrm{Z}=$ lever arm

> X= depth of NA : bw = width of web: b= width of compression face
(For flanged section $b=b f$)
For continuous beam, a modification factor xe given in the code should be used for Ir , Igr , \& Mr . The depth of NA ' x ' \& lever arm Z has to be calculated by elastic analysis is working stress method explained briefly below.

Introduction to WSM
$\mathrm{M}=\frac{E_{s}}{E_{c}}=\frac{x-d^{1}}{3 \sigma_{c b c}} ; \sigma_{c b c}=$ Permissible stress P g. 80
From property of similar triangles,
$\epsilon_{s}^{1}=\frac{x-d^{1}}{x} \times \epsilon \& \epsilon_{s}=\frac{d-x}{x} \times \epsilon_{c} \rightarrow 1$
$\mathrm{f}_{\mathrm{c}}=\mathrm{E}_{\mathrm{c}} \mathrm{x} \epsilon_{\mathrm{c}} \rightarrow 2 \quad f_{s}^{1}=E_{s} \times \in_{s}^{1}=m E_{c} \in_{s}^{1} \rightarrow 3$
$\mathrm{f}_{\mathrm{s}}=\mathrm{E}_{\mathrm{s}} \in_{\mathrm{s}}=\mathrm{mE}_{\mathrm{c}} \in_{\mathrm{s}} \rightarrow 3 \mathrm{a}$.
$\mathrm{C}=\mathrm{T}$.
Asc $f_{s}^{1}+\frac{1}{2} f_{c} b x=A_{s t} f_{s}$ sub $1,2 \& 3$
$1 / 2 b x^{2}+x\left[\left(m\left(A_{s t}+A_{s c}\right)\right]-m\left[\left(A_{s t} d+A_{s c} d^{1}\right)\right]=0 \rightarrow 4\right.$
Eq (4) can also be written in the form of

$$
\frac{b x^{2}}{2}+(1.5 m-1) A_{s c}\left(x-d^{1}\right)=m A_{s t}(d-x) \rightarrow 5
$$

In eq.5, the modular ratio for compression steel is taken as (1.5m)
Use of SP-16 for calculating I $_{\text {ef }}$

1. Using Table - 91: $\mathrm{Pg}-225-228$, we can find NA depth for simply reinforced, $\mathrm{Pc}=0$
2. Using Table - 87-90, find out cracked moment of inertia Ir
3. $\mathrm{I}_{\text {eff }}$ chart -89, Pg. 216

Cracked moment of inertia can be found by the following equation.
For singly reinforced section
$\mathrm{I}_{\mathrm{r}}=\frac{b x^{3}}{3}+m A_{s t}(d-x)^{2}$
For doubly reinforced section,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{r}}=\frac{b x^{3}}{3} & +(m-1) A_{s c}\left(x-d^{1}\right)^{2} \\
& +\mathrm{mA}_{\mathrm{st}}(\mathrm{~d}-\mathrm{x})^{2}
\end{aligned}
$$

2. Long Term deflection

-Creep effect deflection

a) shrinkage deflection
reduces stiffness (EI)
$\varepsilon_{\text {sh }}=0.004$ to 0.0007 for plain concrete
$=0.0002$ to 0.0003 for RCC
$\mathrm{Ysh}=\mathrm{k}_{2} \Psi_{\mathrm{cs}} \mathrm{I}^{2}$
$\mathrm{K}_{3}=$ cantilever -0.5
Simply supported member -0.125 .
Continuous at one end $-0.086 \mathrm{Pg}-88$
Full Continued - 0.063

$$
\begin{aligned}
& \Psi \in_{s}=\frac{k_{4} \in_{c s}}{h} ; k_{4}=\frac{0.72\left(p_{t}-p c\right)}{\sqrt{p t}} \leq 1.0 \text { for }\left(p_{t}-p c\right) 0.25-1.0 \\
& k_{4}= \frac{0.65\left(p_{t}-p c\right)}{\sqrt{p t}} \leq 1.0 \text { for }\left(p_{t}-p c\right)-1.0
\end{aligned}
$$

b) creep deflection \rightarrow permanent
$\mathrm{y}_{\mathrm{scp}}=$ Initial deflection + creep deflection using E_{cc} in plane of E_{c} due to permanent $\mathrm{E}_{\mathrm{sc}}=\frac{E c}{1+c_{c}}$
$\mathrm{C}_{\mathrm{c}}=$ Creep co-efficient
1.2 for 7 days loading
1.6 for 28 days loading
1.1 for 1 year loading
$\mathrm{Y}_{\mathrm{sp}}=$ Short per deflection using E_{c}

$$
\mathrm{Y}_{\mathrm{cp}}=\mathrm{Y}_{\mathrm{scp}}-\mathrm{Y}_{\mathrm{sp}}
$$

A reinforced concrete cantilever beam 4 m span has a rectangular section of size 300 X 600 mm overall. It is reinforced with 6 bars of 20 mm dia on tension side \& 2 bars of 22 mm dia on comp. side at an effective cover of 37.5 mm . Compute the total deflection at the free end when it is subjected to UDL at service load of $25 \mathrm{KN} / \mathrm{m}, 60 \%$ of this load is permanent in nature. Adopt M20 concrete \& Fe 415 steel.

Sol:
$\mathrm{A}_{\mathrm{st}}=6 \mathrm{x} \frac{\pi}{4} \times 20^{2}=1885 \mathrm{~mm}^{2} \quad l=4 m, w=\frac{25 K N}{m}$.
$\mathrm{A}_{\mathrm{sc}}=2 \times \frac{\pi}{4} \times 22^{2}=760 \mathrm{~mm}^{2}$
$\mathrm{f}_{\mathrm{ck}}=200 \mathrm{Mpa}, \mathrm{f}_{\mathrm{y}}=415 \mathrm{Mpa}, \mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{Mpa}$.
$\mathrm{E}_{\mathrm{c}}=5000 \sqrt{20}=2.236 \times 10^{4} \mathrm{Mpa}$
$\mathrm{f}_{\text {cr }}=0.07 \sqrt{f c k}=3.13 M p a$
$\mathrm{m}=\frac{E s}{E c}=\frac{2 \times 10^{5}}{2.236 \times 10^{4}}=8.94$
$\operatorname{Ig}=\frac{300 \times 600^{3}}{12}=5.4 \times 10^{9} \mathrm{~mm}^{4}=\frac{b 03}{12}$
$\mathrm{Yt}=\frac{D^{=h}}{2}=300 \mathrm{~mm}\left(\frac{600}{2}\right)$

Step : 1 Short term deflection
$\mathrm{y}_{\text {short }}=\frac{w l^{4}}{8 E_{c} I_{\text {eff }}}$
$\mathrm{I}_{\mathrm{eff}}=\frac{I r}{102-\frac{M_{c r} Z}{M d}\left(1-\frac{x}{d}\right) \frac{b w}{b}}$
$\mathrm{M}_{\mathrm{cr}}=\frac{f_{c r I} g_{g}}{y_{t}}=\frac{3.13 \times 5.4 \times 10^{9}}{300}=\frac{56.34 \times 10^{6} \mathrm{~N}-\mathrm{mm}}{106}=56.34 \mathrm{KN}-\mathrm{M}$
$\mathrm{M}=\frac{w l^{2}}{2}=\frac{25 \times 4^{2}}{2}=200 \mathrm{KN}-\mathrm{m}$.
$\frac{M_{c r}}{M}=\frac{56.34}{200}=0.282$
From equilibrium condition

$$
\frac{b x^{2}}{2}+(m-1) A_{s c}\left(x-d^{1}\right)=m A_{s t}(d-x)
$$

$$
\begin{aligned}
& \frac{300 x^{2}}{2}+(8.94-1) 760(x-37.5)=8.94 \times 1885(600-x) \\
& \mathrm{x}^{2} \# 52.58 \mathrm{x}-64705.5=0 \\
& \mathrm{x}=189.28 \mathrm{~mm} \\
& \mathrm{Z} \approx \mathrm{~d}-\frac{x}{3}=562.5-\frac{189.28}{3}=499.41 \mathrm{~mm} . \\
& \begin{aligned}
& \mathrm{I}_{\mathrm{r}}=\frac{b \times x^{3}}{3}+(m-1) A_{s c}\left(x-d^{1}\right)^{2}+\mathrm{mA}_{\mathrm{st}}(\mathrm{~d}-\mathrm{x})^{2} \\
& \quad=3.1645 \times 10^{9} \mathrm{~mm}^{4}
\end{aligned} \\
& \begin{aligned}
& \mathrm{I}_{\mathrm{eff}}=\frac{3.1645 \times 10^{9}}{102-0.282 \times \frac{499.41}{562.5}\left(1-\frac{189.28}{562.5}\right)^{\frac{300}{300}}} \\
& \quad=3.01 \times 10^{9} \mathrm{~mm}^{4} \\
& \mathrm{Y}_{\text {short }}=\frac{25 \times(4000)^{4}}{8 \times 2.236 \times 10^{4} \times 3.061 \times 10^{9}} \\
& \quad=11.31 \mathrm{~mm} ; \mathrm{I}_{\mathrm{cr}} \leq \mathrm{I}_{\mathrm{eff}} \leq \mathrm{I}_{\mathrm{g}} \\
& \therefore \mathrm{I}_{\mathrm{eff}}=\mathrm{I}_{\mathrm{cr}}=3.1645 \times 10^{9} \mathrm{~mm}^{4} .
\end{aligned}
\end{aligned}
$$

Step - 2 long term deflection

a) Due to shrinkage
$\mathrm{Y}_{\mathrm{cs}}=\mathrm{k}_{3} \Psi_{\mathrm{cs}} \mathrm{l}^{2} \quad p_{t}=\frac{1885 \times 100}{300 \times 562.5}=1.117$
$\mathrm{K} 3=0.5$ for cantilever $\quad p_{c}=\frac{760 \times 100}{300 \times 562.5}=0.45$
$\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{c}}=1.117-0.45=0.667<1.0$
$\mathrm{K}_{4}=\frac{0.72\left(p_{t}-p_{c}\right)}{\sqrt{p t}}=0.454$
Ecs $=$ shrinkage strain $=0.0003($ Assumed value $)$
$\Psi \mathrm{cs}=\frac{k_{4} \epsilon_{c s}}{h}=2.27 \times 10^{-7}=\frac{0.454 \times 0.0003}{600}$
$Y_{c s}=0.5 \times 2.2+10^{-7} \times 4000^{2}=1.82 \mathrm{~mm}$.
b) Due to creep

$$
\begin{aligned}
\begin{aligned}
\mathrm{E}_{\mathrm{cc}} & =\frac{E c}{1+c_{c}} ; c_{c}=1.6[\text { from code for } 28 \text { days }] \\
& =\frac{2.236 \times 10^{4}}{1+1.6}=8600 \mathrm{Mpa} \\
\mathrm{Y}_{\mathrm{scp}} & =\frac{w_{p} \times l^{4}}{8 E_{c c} I_{e f f}} \\
& =\frac{0.6 \times 25 \times 4000^{4}}{8 \times 8600 \times 3.1605 \times 10^{9}}=17.64 \\
\mathrm{Y}_{\mathrm{sp}} & =0.6 \mathrm{y}_{\mathrm{short}}=6.8 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{cp}} & =17.64-6.8=10.84 \\
\mathrm{Y} & =\mathrm{y}_{\mathrm{short}}+\mathrm{y}_{\mathrm{cs}}+\mathrm{y}_{\mathrm{cp}}=23.97 \\
& =11.31+1.82+10.84
\end{aligned}
\end{aligned}
$$

Unsafe

Doubly reinforced section

$w d=\frac{\text { vol }}{0.3 \times 0.75 \times 1 \times 25}$
$\mathrm{M}_{\mathrm{d}}=\frac{w_{d} R^{2}}{8}=17.58 \mathrm{~K} N-m$.
$\mathrm{M}_{1}=\frac{w d l}{4}=\frac{80 \times 5}{4}=100 \mathrm{KN}-W$
$\mathrm{M}_{\mathrm{u}}=1.5\left(\mathrm{M}_{\mathrm{D}}+\mathrm{M}_{\mathrm{c}}\right)=1.5(17.58+100)=176.37 \mathrm{KN}-\mathrm{M}$
$\mathrm{X}_{\mathrm{ulim}}=0.48 \times \mathrm{d}=324 \mathrm{~mm}$
$\mathrm{M}_{\mathrm{ulim}}=\mathrm{Q}_{\mathrm{lim}} \mathrm{bd}^{2}$
$=\frac{4.14 \times 300 \times 675^{2}}{10^{6}}$
$=565.88 \mathrm{KN}-\mathrm{m}$.
Singly reinforced $\mathrm{s} / \mathrm{n} \mathrm{A}_{\mathrm{st}}=\frac{p t_{\text {lim }} b d}{100}$
$\mathrm{P}_{\mathrm{tlim}}=7.43 \% \quad=\frac{1.43 \times 300 \times 675}{100}$
6 -\#25bar is taken.
$\left(\mathrm{A}_{\text {st }}\right)_{\text {provided }}=6 \times 490=2940>2895$

2b) $b=150 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}, \mathrm{p}_{\mathrm{t}}=0.75 \%, \mathrm{v}_{\mathrm{v}}=150 \mathrm{KN}, \mathrm{f}_{\mathrm{ck}}=25, \mathrm{f}_{\mathrm{y}}=415$
$\tau_{\mathrm{v}}=\frac{150 \times 10^{3}}{150 \times 400}=\frac{2.5 \mathrm{~N}}{\mathrm{~mm}^{2}}$
$\tau_{\mathrm{c}}=0.57 \mathrm{~N} / \mathrm{mm}^{2}$.
$\tau_{\mathrm{cmax}}=3.1 \mathrm{~N} / \mathrm{mm}^{2}$.
$\tau_{\mathrm{c}}<\tau_{\mathrm{v}}<\tau_{\mathrm{cmac}}$
$\mathrm{v}_{\mathrm{cu}}=\tau_{\mathrm{c}} \mathrm{bd}=\frac{0.57 \times 150 \times 400}{10^{3}}=34.2 \mathrm{KN}$.
$\mathrm{v}_{\mathrm{us}}=\mathrm{v}_{\mathrm{u}}-\mathrm{v}_{\mathrm{cu}}=115.8 \mathrm{KN}$.
Assume 2L-10\# $\mathrm{A}_{\mathrm{su}}=2 \times \frac{\pi}{4} \times 10^{2}$

$$
=157.07 \mathrm{~mm}^{2}
$$

$S_{\mathrm{v}}=\frac{0.87 f y A_{s v} d}{v_{u s}}$
$=\frac{0.87 \times 415 \times 157.07 \times 400}{115.8 \times 10^{3}}$
$=195.88 \mathrm{~mm}$
$S_{\mathrm{vmax}}=\frac{0.87 f_{y} A_{s v}}{0.4 b}=945.16 \mathrm{~mm}$
$0.75 \mathrm{~d}=300 \mathrm{~mm}$
300 mm
\therefore provide 2l-\#10@ $195.99 \mathrm{c} / \mathrm{c}$.
2c) $b=200 \mathrm{~mm}, \mathrm{~d}=300 \mathrm{~mm}, \mathrm{p}_{\mathrm{t}}=0.8 \%, \mathrm{v}_{\mathrm{v}}=180 \mathrm{KN}, \mathrm{f}_{\mathrm{ck}}=20, \mathrm{f}_{\mathrm{y}}=415$.
$\tau_{c}=\frac{v u}{b d}=\frac{180 \times 10^{3}}{200 \times 300}=\frac{3 \mathrm{~N}}{\mathrm{~mm}^{2}}$
$\tau_{\text {cmax }}=2.8 \quad$ pt $0.75 \rightarrow \quad \tau_{\mathrm{c}} 0.56$
$1.0 \quad 0.62$
$\operatorname{Pf}=0.8 ; \tau=0.56+\frac{(0.62-0.56)}{(1-0.75)}$
$\tau_{\mathrm{c}}=0.572 \mathrm{~N} / \mathrm{mm}^{2}$.
$\tau_{\mathrm{v}}>\tau_{\mathrm{cmax}}$; unsafe, hence increased
Let 'd' be 350 mm
$\tau_{\mathrm{v}}=2.57 \mathrm{~N} / \mathrm{mm}^{2}$.
$\therefore \tau_{\mathrm{c}}<\tau_{\mathrm{v}}<\tau_{\mathrm{cmax}}$; safe sh.rei required.
Step 2 shear reinforcement.
$\mathrm{V}_{\mathrm{cu}}=\tau_{\mathrm{c}} \mathrm{bd}=0.572 \times 200 \times 350=40 \mathrm{KN}$.
$\mathrm{V}_{\mathrm{us}}=\mathrm{v}_{\mathrm{u}}-\mathrm{V}_{\mathrm{cu}}=180-40=140 \mathrm{KN}$.
Assume 2L-\#10; $\mathrm{A}_{\mathrm{sv}}=157 \mathrm{~mm}^{2}$.
Spaces of vertical stirrups
$S_{\mathrm{v}}=\frac{0.87 \times 415 \times 157 \times 350}{140 \times 1000}=141.71 \mathrm{~mm} \approx 140 \mathrm{~mm}$
Step 3: Check for max. spacing

1. $\mathrm{S}_{\mathrm{vmax}}=\frac{0.87 \times 157 \times 415}{0.4 \times 200}=708.5 \mathrm{~mm}$.
2. $0.75 \mathrm{~d}=0.75 \times 350=262.5 \mathrm{~mm}$
3. $300 \mathrm{~mm} \quad \mathrm{~s}_{\mathrm{v}}<\mathrm{s}_{\mathrm{umax}}$ is $140<262.5 \mathrm{~mm}$

Hence provide 2L-\#10@140 c/c.
4) $l e=10 \mathrm{~m}$
$W=q^{1}+q^{11} \quad q^{1}=45 K N / m$.
$\mathrm{b}_{\mathrm{w}}=300 \mathrm{~mm}, \mathrm{~s}=3 \mathrm{~m}, \mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpa}, \mathrm{f}_{\mathrm{y}}=415 \mathrm{Mpa}$
$\mathrm{bf}=\frac{l o}{6}+b w+60 f \quad$ Assume $D_{f}=100 \mathrm{~mm}$
$=\frac{10000}{6}+300+6(100)$
$=2566.67 \mathrm{~mm}<3000 \mathrm{~mm}$
$\mathrm{h}=\frac{\text { lo }}{12}$ to $\frac{l o}{15}$ [8333.33 to 666.67] Assume $c_{e}=50 \mathrm{~mm}$
$\mathrm{h}=750 \mathrm{~mm}, \mathrm{~d}=700 \mathrm{~mm}$
bxhx 1 density
self $=0.3 \times 0.65 \times 1 \times 25$
$\mathrm{q}^{11}=4.875 \mathrm{KN} / \mathrm{m}$
$\mathrm{W}=45+4.875=49.875 \mathrm{KN} / \mathrm{m}$
$\mathrm{M}=\frac{50.625 \times 10^{2}}{8}+\frac{50 \times 10}{4}=\frac{748.8 \mathrm{KN}}{m}$.
$\mathrm{M}_{\mathrm{u}}=1136.7 \mathrm{KN} / \mathrm{m}$
$\left(\mathrm{A}_{\mathrm{st}}\right)_{\mathrm{oppr}}=\frac{M u}{0.87 f y\left(d-\frac{D f}{2}\right)}=4843.56 \mathrm{~mm}^{2} \quad 10-\# 25=9910 \mathrm{~mm}^{2}$
Step2: $\mathrm{x}_{\mathrm{u}}=\frac{0.87 \text { fyAst }}{0.36 f_{c k} b_{f}}=95.92 \mathrm{~mm}<D_{f}<x_{\text {ulim }}$
$\mathrm{M}_{\mathrm{ur}}=0.36_{\text {fck }} \mathrm{x}_{\mathrm{u}} \mathrm{b}_{\mathrm{f}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)=1169.4 \mathrm{KN}-\mathrm{m}$.
2. Step $2: \mathrm{b}_{\mathrm{f}}=\frac{l o}{6}+b w+6 D_{f}$

$$
\begin{gathered}
=\frac{6000}{6}+300+6(120) \\
=2020 \mathrm{~mm} . \\
\mathrm{h}=\frac{l o}{12} \text { to } \frac{l o}{15}[500 \text { to } 400] \text { self } w t=1 \times 1 \times 0.12 \times 25=34 / \mathrm{m}^{2}
\end{gathered}
$$

$\mathrm{h}=450 \mathrm{~mm}$

$$
\mathrm{q}=85 \mathrm{KN} / \mathrm{m}^{2}
$$

$d=h-50=400 \mathrm{~mm} \quad \mathrm{w}-\mathrm{q} \times \mathrm{s} \times 1=8 \times 3 \times 1$
$\left(\mathrm{A}_{\mathrm{st}}\right)_{\text {app }}=\frac{M u}{0.87 f y\left(d-\frac{D f}{2}\right)}$
self $w t=\frac{24 K N}{m}, 0.3 \times 0.33 \times 1 \times 25=24$
$=\frac{101.25 \times 10^{6}}{0.87 \times 415\left[400-\frac{120}{2}\right]}$
$M d=\frac{w l^{2}}{8}=W=26.4, \quad M d=119.14 M u=178.7$
$=824.80 \mathrm{~mm}^{2}$.

Provide 3-\#20 $\therefore\left(\mathrm{A}_{\text {st }}\right)_{\text {provided }} 3 \times 314=942>824.8$
Step 2: Assume NA to be on flange
$\mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{f} \mathrm{X}_{\mathrm{u}}}$
$\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }}$.
$\mathrm{x}_{\mathrm{u}}=\frac{0.87 f y A_{s t}}{0.36 f_{c k} b_{f}}=23.38 \mathrm{~mm}<D_{f}<x_{u}$
$\mathrm{X}_{\mathrm{ulim}}=192 \mathrm{~mm}$.

$$
\begin{aligned}
\mathrm{M}_{\mathrm{ur}} & =0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}_{\mathrm{f}} \mathrm{x}_{\mathrm{u}}\left(\mathrm{~d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \\
& =0.36 \times 20 \times 2020 \times 23.38[400-0.42 \times 23.38] \\
& =132.67 \mathrm{KN} / \mathrm{m}<101.25 \mathrm{KN}-\mathrm{m} .
\end{aligned}
$$

