Chapter-5: Matrix Method Of Analysis

By Prof. S.S.Manavade
B.L.D.E.A's College Of Engineering \& Technology, Bijapur

LECTURE No. 1

INTRODUCTION TO MATRIX METHODS

MATRIX METHODS OF ANALYSIS :
Broadly the methods of analysis are categorised in two ways

1. Force Methods: Methods in which forces are made unknowns i.e Method of consistent deformation and strain energy method. In both these methods solution of number of simultaneous equations is involved.
2. Displacement Methods in which displacements are made unknowns i.e slope deflection method, Moment distribution method and Kani’s Method (In disguise). In slope deflection method also, the solution of number of simultaneous equations is involved.
In both of the above methods, for the solution of simultaneous equations matrix approach can be employed \& such Method is called Matrix method of analysis.

FORCE METHOD :

Method of consistent deformation is the base and forces are made unknown

b) Primary structure

A三nmma d d) Primary str. acted upon by only actual load ie $x_{b}=0$ condition
 and redundant x_{b}
e) Primary str. acted upon by unit value
1.0 of x_{b} ie $x_{b}=1.0$
$\Delta b=$ Upward Deflection of point B on primary structure due to all causes
$\Delta b o=$ Upward Deflection of point B on primary structure due to applied load(Redundant removed ie condition $\mathrm{Xb}=0$)
$\Delta \mathrm{bb}=$ Upward Deflection of point B on primary structure due to Xb (i.e Redundant)
$\delta b b=$ Upward Deflection of point B on primary structure due to $\mathrm{Xb}=1$
$\Delta \mathrm{bb}=\delta \mathrm{bb} . \mathrm{Xb}$
$\therefore \Delta \mathrm{b}=\Delta \mathrm{bo}+\Delta \mathrm{bb} \quad$ Substituting for $\Delta \mathbf{b b}-$
$\Delta \mathrm{b}=\Delta \mathrm{bo}+\delta \mathrm{bb} . \mathrm{Xb} \quad$ Called Super position equation
Using the compatibility condition that the net displacement at $\mathrm{B}=0$ ie

$$
\Delta \mathrm{b}=0 \text { we get } \mathrm{Xb}=-\Delta \mathrm{bo} / \delta \mathrm{bb}
$$

To Conclude we can say, $\quad[\Delta]=[\Delta \mathbf{L}]+[\Delta \mathbf{R}]$

DISPLACEMENT METHOD:

This method is based on slope deflection method and displacements are made unkowns
which are computed by matrix approch instead of solving simultaneous equations and finaly unknown forces are calculated using slpoe deflection equations.
$\mathrm{Mab}=\mathrm{Mab}+2 \mathrm{EI} / \mathrm{L}(2 \theta \mathrm{a}+\theta \mathrm{b}+3 \delta / \mathrm{L})$
$\mathrm{Mab}=$ Final Moment and may be considered as net force P at the joint
$\mathrm{Mab}=$ Fixed end moment i.e Force required for the condition of zero displacements \& is called locking force. (i.e. P')
The second term may be considred as the force required to produce the required displacements at the joints. (i.e Pd)Therefore the above equation may be written as $\quad[\mathbf{P}]=[\mathbf{P} ’]+[\mathbf{P d}]$
Thus, there are Two Methods in matrix methods

MATRIX METHODS

The force method is also called by the names 1) Flexibility Method 2)Static Method 3)Compatibility.
Similarly the displacement method is also called by the names 1)Stiffness Method
2) Kinematic method 3) Equilibrium Method.

In both force method \& displacement method there are two different approaches 1)
System Approach 2) Element Approach.

To study matrix methods there are some pre-requisites :
i) Matrix Algebra - Addition, subtraction ,Multiplication \& inversion of matrices (Adjoint Method)
ii) Methods of finding out Displacements i.e. slope \& deflection at any point in a structure, such as a)Unit load method or Strain energy method b) Moment area method etc.
According to unit load method the displacement at any point ' j ' is given by

$$
\Delta \mathbf{j}=\oint \mathbf{M m j d s} / \mathbf{E I} \quad \text { Where } \mathrm{M}-\mathrm{B} \text { M due to applied }
$$

loads \& mj - B M due to unit load at j

When unit load is applied at i and is called flexibility coefficient.
The values of $\mathbf{\Delta} \mathbf{j}$ and $\mathbf{\delta} \mathbf{i} \mathbf{j}$ can be directly read from the table depending upon the combinations of B M diagrams \& these tables are called Diagram Multipliers.
iii) Study of Indeterminacies - Static indeterminacy \& kinematic indeterminacy

DIAGRAM MULTIPLIERS.

LECTURE No. 2

INDETERMINATE STRUCTURES

1. Statically Indeterminate Structure
2. Kinematically Indeterminate Structure

INDETERMINATE STRUCTURES
Statically Indeterminate Structure : Any structure whose reaction components or internal stresses cannot be determined by using equations of static equilibrium alone, (i.e. $\Sigma \mathrm{Fx}=0, \Sigma \mathrm{Fy}=0, \Sigma \mathrm{Mz}=0$) is a statically Indeterminate Structure.

The additional equations to solve statically indeterminate structure come from the conditions of compatibility or consistent displacements.

Hinged Support : No. of reactions, $\quad r=2$

Fixed Support: No. of reactions, $\quad r=3$

1. Pin Jointed Structures i.e. Trusses

Internal static indeterminacy : (Dsi) No. of members required for stability is given by -3 joints -3 members - every additional joint requires two additional members.
$\therefore \quad \mathrm{m}=2(\mathrm{j}-3)+3 \quad \mathrm{j}=$ No. of joints
$\therefore \quad m^{\prime}=2 j-3 \quad$ Stable and statically determinate
Dsi $=m-\mathrm{m}$ ' Where $\mathrm{m}=$ No. of members in a structure
Dsi $=\mathbf{m}-(\mathbf{2} \mathbf{j}-\mathbf{3})$
External static indeterminacy (Dse)
$r=$ No. of reaction components
Equations of static equilibrium $=3 \quad$ (i.e. $\Sigma \mathrm{Fx}=0, \Sigma \mathrm{Fy}=0, \Sigma \mathrm{Mz}=0$)
$\therefore \quad$ Dse $=\mathbf{r}-3$
Total static indeterminacy Ds $=$ Dsi + Dse $\quad \therefore$ Ds $=m-(2 j-3)+(r-3)$
$\therefore \mathbf{D s}=(\mathbf{m}+\mathbf{r})-\mathbf{2 j}$
Rigid Jointed Structures : No. of reaction components over and above the no. of equations of static equilibrium is called a degree of static indeterminacy.

$$
\begin{aligned}
& \text { Ds }=\mathbf{r - 3} \quad \text { Equations of static equilibrium }=3 \quad \text { (i.e. } \Sigma F x=0, \Sigma F y=0, \Sigma \mathrm{Mz} \\
& =0)
\end{aligned}
$$

Example 1

No. of reaction components $\quad r=5$ (as shown)

$$
\therefore \mathrm{Ds}=\mathrm{r}-3=5-3=2 \quad \text { Ds }=\mathbf{2}
$$

Fig. 2.
Introduce cut in the member BC as shown. At the cut the internal stresses are introduced i.e. shear force and bending moment as shown.
Left part : No. of unknowns $=5 \quad$ Equations of equilibrium $=3$
\therefore Ds $=5-3=2$
Right Part : No. of unknowns $=4$ Equations of equilibrium $=2$
\therefore Ds $=4-2=2$
\therefore Ds $=$ Static Indeterminacy $=2$

Example 2

Fig. (A)
Fig. (B)
Fig. (C)

In the problem. -
$D_{s}=3 \times 2=6 \quad \because c=2$
Another Approach : For Every member in a rigid jointed structure there will be 3 unknowns i.e. shear force, bending moment, axial force.

Let r be the no. of reaction components and m be the no. of members

Total no. of unknowns $=\mathbf{3 m}+\mathbf{r}$

At every joint three equations of static equilibrium are available
\therefore no. of static equations of equilibrium $=3 \mathrm{j} \quad$ (where j is no. of joints)

$$
\therefore D s=(3 m+r)-\mathbf{3 j}
$$

\therefore In the example $\quad r=6, m=6, j=6$
\therefore Ds $=(3 \times 6+6)-(3 \times 6)=6$

LECTURE No. 3

Kinematic Indeterminacy :

A structure is said to be kinematically indeterminate if the displacement components of its joints cannot be determined by compatibility conditions alone. In order to evaluate displacement components at the joints of these structures, it is necessary to consider the equations of static equilibrium. i.e. no. of unknown joint displacements over and above the compatibility conditions will give the degree of kinematic indeterminacy.

Fixed beam : Kinematically determinate :

Simply supported beam Kinematically indeterminate

$$
\begin{aligned}
& \begin{array}{c}
\Delta \delta_{y}=0 \\
\theta=0
\end{array} \\
& \text { Any joint - Moves in three directions in a plane structure } \\
& \text { Two displacements } \delta x \text { in } x \text { direction, } \delta \mathrm{y} \text { in } \mathrm{y} \text { direction, } \theta \\
& \text { rotation about } z \text { axis as shown. } \\
& \text { Roller Support : } \\
& r=1, \delta y=0, \theta \& \delta x \text { exist }- \text { DOF }=2 \quad e=1 \\
& \text { Hinged Support : } \\
& r=2, \delta x=0, \delta y=0, \theta \text { exists }-D O F=1 \quad e=2 \\
& \text { Fixed Support : } \\
& r=3, \delta x=0, \delta y=0, \theta=0 \quad D O F=0 \quad e=3
\end{aligned}
$$

i.e. reaction components prevent the displacements \therefore no. of restraints $=$ no. of reaction components.
Degree of kinematic indeterminacy :
Pin jointed structure :Every joint - two displacements components and no rotation
$\therefore \mathbf{D k}=\mathbf{2 j} \mathbf{j} \mathbf{e} \quad$ where, $\quad \mathrm{e}=\mathrm{no}$. of equations of compatibility $=$ no. of reaction components

Rigid Jointed Structure : Every joint will have three displacement components, two displacements and one rotation.
Since, axial force is neglected in case of rigid jointed structures, it is assumed that the members are inextensible \& the conditions due to inextensibility of members will add to the numbers of restraints. i.e to the ' \mathbf{e} ' value.
$\therefore \mathbf{D k}=\mathbf{3 j}-\mathbf{e} \quad$ where,$\quad \mathrm{e}=$ no. of equations of compatibility $=$ no. of reaction components + constraints due to in extensibility
Example 1 : Find the static and kinematic indeterminacies

$$
\mathrm{r}=4, \mathrm{~m}=2, \mathrm{j}=3
$$

Ds $\quad=(3 m+r)-$
3 j

$$
\begin{aligned}
& =(3 \times 2+4)-3 \times 3=1 \\
\mathrm{Dk} \quad & =3 \mathrm{j}-\mathrm{e} \\
& =3 \times 3-6=3
\end{aligned}
$$

i.e. rotations at $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ i.e. $\theta \mathrm{a}, \theta \mathrm{b}$ \& $\theta \mathrm{c}$ are the displacements.
($\mathrm{e}=$ reaction components + inextensibility conditions $=4+2=6$)
Example 2 :

$$
\begin{aligned}
& \mathrm{Ds}=(3 \mathrm{~m}+\mathrm{r})-3 \mathrm{j} \\
& \mathrm{~m}=3, \mathrm{r}=6, \mathrm{j}=4 \\
& \therefore \mathrm{Ds}=(3 \times 3+6)-3 \times 4=3
\end{aligned}
$$

components inextensibility

$$
\begin{aligned}
\mathrm{Dk}=3 \mathrm{j}-\mathrm{e} & \quad \mathrm{e}=\text { no. of reaction } \\
& + \text { conditions of }
\end{aligned}
$$

$$
=6+3=9
$$

$$
\mathrm{Dk}=3 \times 4-9=3 \text { i.e. rotation } \theta \mathrm{b}, \theta \mathrm{c} \& \text { sway. }
$$

Example 3 :

Conditions of inextensibility :
Joint: B C E F H I

$$
\begin{array}{lllllll}
1 & 1 & 2 & 2 & 2 & 2
\end{array} \text { Total }=10
$$

Reaction components $\quad r=6$

$$
\therefore e=10+6=16
$$

$$
\therefore \mathrm{Dk}=3 \mathrm{j}-\mathrm{e}
$$

$$
=3 \times 9-16=11
$$

LECTURE No. 4

FORCE METHOD :

This method is also known as flexibility method
or compatibility method. In this method the degree of static indeterminacy of the structure is determined and the redundants are identified. A coordinate is assigned to each redundant. Thus,P1, P2-- - - -Pn are the redundants at the coordinates 1,2, --- - n.If all the redundants are removed, the resulting structure known as released structure, is statically determinate. This released structure is also known as basic determinate structure. From the principle of super position the net displacement at any point in statically indeterminate structure is some of the displacements in the basic structure due to the applied loads and the redundants. This is known as the compatibility condition and may be expressed by the equation;

$$
\begin{array}{ll}
\Delta_{1}=\Delta_{1} \mathrm{~L}+\Delta_{1} \mathrm{R} & \text { Where } \Delta 1---\Delta \mathrm{n}=\text { Displ. At Co-ord.at } 1,2-\mathrm{n} \\
\Delta_{2}=\Delta_{2} \mathrm{~L}+\Delta_{2} \mathrm{R} & \Delta_{1} \mathrm{~L}---\Delta_{\mathrm{n}} \mathrm{~L}=\text { Displ.At Co-ord.at } 1,2-\cdots-\mathrm{n} \\
\text { Due to aplied loads }
\end{array}
$$

The above equations may be return as $[\Delta]=\left[\Delta_{\mathrm{L}}\right]+\left[\Delta_{\mathrm{R}}\right]$--- (1)
$\Delta_{1}=\Delta_{1} L+\delta_{11} P_{1}+\delta_{12} P_{2}+---\delta_{1 n} P_{n}$
$\Delta_{2}=\Delta_{2} L+\delta_{21} P_{1}+\delta_{22} P_{2}+---\delta_{2 n} P_{n}$

$$
\begin{equation*}
\Delta_{\mathrm{n}}=\Delta_{\mathrm{n}} \mathrm{~L}+\delta_{\mathrm{n} 1} \mathrm{P}_{1}+\delta_{\mathrm{n} 2} \mathrm{P}_{2}+---\delta_{\mathrm{nn}} \mathrm{P}_{\mathrm{n}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \Delta=[\Delta \mathrm{L}]+[\delta][\mathrm{P}] \tag{3}
\end{equation*}
$$

$\therefore[\mathrm{P}]=[\delta]^{-1}\{[\Delta]-[\Delta \mathrm{L}]\}$
If the net displacements at the redundants are zero then $\Delta 1, \Delta 2--\Delta n=0$,
Then $\therefore[\mathrm{P}]=-[\delta]^{-1}[\Delta \mathrm{~L}]$
The redundants P1,P2,---- Pn are Thus determined

DISPLACEMENT METHOD :

This method is also known as stiffness or equilibrium. In this method the degree of kinematic indeterminacy (D.O.F) of the structure is determined and the coordinate is assigned to each independent displacement component.

In general, The displacement components at the supports and joints are treated as independent displacement components. Let $1,2,----\mathrm{n}$ be the coordinates assigned to these independent displacement components $\Delta 1, \Delta 2---\Delta n$.

In the first instance lock all the supports and the joints to obtain the restrained structure in which no displacement is possible at the coordinates. Let P'1, P'2, --- P'n be the forces required at the coordinates $1,2,----n$ in the restrained structure in which the displacements $\Delta 1, \Delta 2---\Delta n$ are zero. Next, Let the supports and joints be unlocked permitting displacements $\Delta 1, \Delta 2---\Delta n$ at the coordinates. Let these displacements require forces in P1d, P2d, --- Pnd at coordinates $1,2,---\mathrm{n}$ respectively.
If P1, P2---- Pn are the external forces at the coordinates $1,2,---\mathrm{n}$, then the conditions of equilibrium of the structure may be expressed as:

$$
\mathrm{P}^{\prime}=\text { Locking forces }
$$

$\mathrm{Pd}=$ Forces due to displacements
If the external forces act only at the coordinates the terms $\mathrm{P}^{\prime} 1, \mathrm{P}^{\prime} 2,---\mathrm{P}^{\prime} \mathrm{n}$ vanish. i. e the Locking forces are zero,then
[Δ] $=[\mathrm{K}$] -1 [P]
On the other hand if there are no external forces at the coordinates then $[\mathrm{P}]=0$ then

$$
\begin{equation*}
[\Delta]=-[\mathrm{K}]-1\left[\mathrm{P}^{\prime}\right] \tag{6}
\end{equation*}
$$

Thus the displacements can be found out. Knowing the displacements the forces are computed using slope deflection equations:
$\mathrm{Mab}=\mathrm{Mab}+2 \mathrm{EI} / \mathrm{L}(2 \theta \mathrm{a}+\theta \mathrm{b}+3 \delta / \mathrm{L})$
Mba=Mba+2EI / L ($\theta \mathrm{a}+2 \theta \mathrm{~b}+3 \delta / \mathrm{L})$
Where Mab\& Mba are the fixed end moments for the member $A B$ due to external loading

LECTURE No. 5

FLEXIBILITY AND STIFFNESS MATRICES : SINGLE CO-ORD.

$\mathrm{D}=\mathrm{ML} / \mathrm{EI}$
$\mathrm{D}=\delta \times \mathrm{M}=\mathrm{ML} / \mathrm{EI}$
$\therefore \delta=\mathrm{L} / \mathrm{EI}$
$\delta=$ Flexibility Coeff.
$\mathrm{M}=\mathrm{K} \times \mathrm{D}=\mathrm{K} \times \mathrm{ML} / \mathrm{EI}$
$\therefore \mathrm{K}=\mathrm{EI} / \mathrm{L}$
$K=$ Stiffness Coeff.
$\delta \mathrm{XK}=1$

TWO CO-ORDINATE SYSTEM

$$
\begin{aligned}
& D_{1}=\delta_{11} P_{1}+\delta_{12} \times P_{2} \& D_{2}=\delta_{21} P_{1}+\delta_{22} P_{2} \\
& \therefore D_{1} \quad \delta_{11} \delta_{12} P_{1} \\
& \\
& D_{2} \quad \delta_{21} \delta_{22} P_{2}
\end{aligned}
$$

Unit Force At Co-ord.(1)

$$
[\delta]=\left[\begin{array}{ll}
L^{3} / 3 E I & L^{2} / 2 E I \\
L^{2} / 2 E I & L / E I
\end{array}\right]
$$

$$
\delta_{11}=L^{3} / 3 E I
$$

$$
\delta_{21}=L^{2} / 2 E I
$$

Unit Force At Co-ord.(2)

$$
\delta_{12}=\delta_{21}=L^{2} / 2 \mathrm{El} \delta_{22}=\mathrm{L} / \mathrm{El}
$$

STIFFNESS MATRIX

$$
K_{11}=12 \mathrm{El} / \mathrm{L}^{3}
$$

$$
K_{21}=-6 E l /\left\llcorner^{2}\right.
$$

Unit Displacement at (1)

$$
\begin{array}{ll}
& K_{12}=-6 \mathrm{El} / \mathrm{L}^{2} \\
\text { Unit Displacement at (2) } & K_{22}=4 \mathrm{EI} / \mathrm{L}
\end{array}
$$

Forces at Co-ord.(1) \& (2)

Forces at Co-ord.(1) \& (2)
$\begin{array}{ll}P_{1}=K_{11} D_{1}+K_{12} D_{2} \\ P_{2}=K_{21} D_{1}+K_{22} D_{2}\end{array} \quad \therefore\left[\begin{array}{l}P_{1} \\ P_{2}\end{array}\right]=\left[\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right]\left[\begin{array}{l}D_{1} \\ D_{2}\end{array}\right] \quad K=\left[\begin{array}{c}12 E I / L^{3}-6 E I / L^{2} \\ -6 E I / L^{2} 4 E I / L\end{array}\right]$

Develop the Flexibility and stiffness matrices for frame ABCD with reference to Coordinates shown

The Flexibility matrix can be developed by applying unit force successively at coordinates (1),(2) \& (3) and evaluating the displacements at all the coordinates

$$
\delta_{\mathrm{ij}}=\int \mathrm{mimj} / \text { El x ds } \quad \delta_{\mathrm{ij}}=\text { displacement at I due to unit load at } \mathrm{j}
$$

Unit Load at (1) Unit Load at (2)
 Unit Load at (3)

Portion	DC	$C B$	$B A$
I	l	41	41
Origin	D	C	B
Limits	$0-5$	$0-10$	$0-10$
$\mathrm{~m}_{1}$	x	5	$5-\mathrm{x}$
m_{2}	0	x	10
$\mathrm{~m}_{3}$	-1	-1	-1

$$
\begin{aligned}
& \delta_{11}=\int \mathrm{m}_{1} \cdot \mathrm{~m}_{1} \mathrm{dx} / \mathrm{EI}=125 / \mathrm{EI} \\
& \mathrm{\delta}_{21}=\delta_{12}=\int \mathrm{m}_{1} \cdot \mathrm{~m}_{2} \mathrm{dx} / \mathrm{EI}=125 / 2 \mathrm{EI} \\
& \mathrm{\delta}_{31}=\delta_{13}=\int \mathrm{m}_{1} \cdot \mathrm{~m}_{3} \mathrm{~d} \times / \mathrm{EI}=-25 / \mathrm{El} \\
& \mathrm{\delta}_{22}=\int \mathrm{m}_{2} \cdot \mathrm{~m}_{2} \mathrm{dx} / \mathrm{EI}=1000 / 3 \mathrm{El} \\
& \mathrm{\delta}_{23}=\delta_{32}=\int \mathrm{m}_{2} \cdot \mathrm{~m}_{3} \mathrm{~d} \times / \mathrm{EI}=-75 / 2 \mathrm{EI} \\
& \mathrm{\delta}_{33}=\int \mathrm{m}_{3} \cdot \mathrm{~m}_{3} \mathrm{dx} / \mathrm{EI}=10 / \mathrm{El} \\
& \therefore \bar{\delta}=1 / 6 \mathrm{El}\left[\begin{array}{rrr}
750 & 375 & -150 \\
375 & 2000 & -225 \\
-150 & -225 & 60
\end{array}\right]
\end{aligned}
$$

LECTURE No. 6

STIFFNESS MATRIX

$$
\begin{aligned}
& \mathrm{K}_{11}=\left(12 \mathrm{El} / \mathrm{L}^{3}\right)_{\mathrm{AB}}+\left(12 \mathrm{El} / \mathrm{L}^{3}\right)_{\mathrm{CD}}=0.144 \mathrm{EI} \\
& \mathrm{~K}_{21}=-\left(6 \mathrm{El} / \mathrm{L}^{2}\right)_{\mathrm{AB}}=-0.24 \mathrm{EI} \\
& \mathrm{~K}_{31}=-\left(6 \mathrm{EI} / \mathrm{L}^{2}\right)_{\mathrm{CD}}=-0.24 \mathrm{EI}
\end{aligned}
$$

Given Co-ordinates

Unit Displacement at Co-ordinate (1)

Unit Dspl at Co-ord. (2)

$$
\begin{aligned}
& \mathrm{K}_{12}=\mathrm{K}_{21}=-\left(6 \mathrm{EI} / \mathrm{L}^{2}\right)_{\mathrm{AB}}=-0.24 \mathrm{El} \\
& \mathrm{~K}_{22}=(4 \mathrm{EI} / \mathrm{L})_{\mathrm{AB}}+(4 \mathrm{El} / \mathrm{L})_{\mathrm{BC}}=3.2 \mathrm{El} \\
& \mathrm{~K}_{32}=(2 \mathrm{EI} / \mathrm{L})_{\mathrm{BC}}=0.82 \mathrm{El}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{13}=\mathrm{K}_{31}=-\left(6 \mathrm{EI} / \mathrm{L}^{2}\right)_{\mathrm{CD}}=-0.24 \mathrm{EI} \\
& \mathrm{~K}_{23}=\mathrm{K}_{32}=(2 \mathrm{EI} / \mathrm{L})_{\mathrm{BC}}=0.82 \mathrm{EI} \\
& \mathrm{~K}_{33}=(4 \mathrm{EI} / \mathrm{L})_{\mathrm{BC}}+(4 \mathrm{EI} / \mathrm{L})_{\mathrm{CD}}=2.4 \mathrm{EI}
\end{aligned}
$$

$$
\mathrm{K}=\mathrm{EI}\left[\begin{array}{ccc}
0.144 & -0.24 & -0.24 \\
-0.24 & 3.2 & 0.8 \\
-0.24 & 0.8 & 2.4
\end{array}\right]
$$

Force Method (Flexibility or compatibility method)	Displacement method (Stiffness or equilibrium method)
1. Determine the degree of static indeterminacy (degree of redundancy), n	1. Determine the degree of kinematic indeterminacy (degree of freedom). n
2. Choose the redundan	2. Identify the independent displacement components
3. Assign coordinates 1, 2, n to the redundants	3. Assign coordinates 1, 2..... n to the independent displacement components.

4. Remove all the redundants to obtain to obtain the released structure.	4. Prevent all the independent displacement components to obtain the restrained structure.
5. Determine the displacements at the coordinates due to applied loads acting on the released structure	5. Determine $\left[P^{1}\right]$ the forces at the coordinates in the restrained structure due to the loads other than those acting at the coordinates
6. Determine $\left[\Delta_{R}\right]$. the displacements at the coordinates due to the redundants acting on the released structure	6. Determine $\left[P_{\Delta}\right]$ the forces required at the coordinates in the unrestrained structure to cause the independent displacement components[$\Delta]$

7. Compute the net displacement at the coordinate $[\Delta]=\left[\Delta_{L}\right]+\left[\Delta_{R}\right]$	7. Compute the forces at the coordinates $[P]=\left[P^{1}\right]+\left[P_{\Delta}\right]$
8. Use the conditions of compatibility of displacements to compute the redundants $[P]=[\delta]^{-1}\left\{[\triangle]-\left[\Delta_{L}\right]\right\}$	8. Use the conditions of equilibrium of forces to compute the displacements $[\Delta]=[k]^{-1}\left\{[P]-\left[P^{1}\right]\right\}$
9. Knowing the redundants. compute the internal member forces by using equations of statics.	9. Knowing the displacements, compute the internal member forces by using slope deflection equation.

LECTURE No . 7
Example: (1)

$$
\begin{aligned}
\Delta_{I L} & =\frac{1}{E I}\left[\frac{-120 \times 5}{6}(2 \times 10+5)+\frac{10 \times 10}{6}\{2 \times(-180)+(-60)\}\right] \\
& =-9500 / E I
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{2 L} & =\frac{1}{E I}\left[\frac{-120 \times 5}{6}(2 \times 20+15)+\frac{-180 \times 15}{6}(2 \times 20+5)\right] \\
& =-25750 / E I \\
\delta_{11} & =\frac{1}{E I}\left[\frac{1}{3} \times 10 \times 10 \times 10\right]=\frac{1000}{3 E I} \\
\delta_{12} & =\delta_{21}=\frac{1}{E I}\left[\frac{1}{6} \times 10 \times 10(2 \times 20+10)\right]=\frac{2500}{3 I} \\
\delta_{22} & =\frac{1}{E I}\left[\frac{1}{3} \times 20 \times 20 \times 20\right]=\frac{8000}{3 E I}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\therefore[\delta]=\frac{1}{3 E I}\left[\begin{array}{ll}
1000 & 2500 \\
2500 & 8000
\end{array}\right] \quad \text { Using, }[P]=[\delta]^{-1}\left\{[\Delta]-\left[\Lambda_{L}\right]\right\} \\
{[\Delta]=0 \text { Net displacer }}
\end{array}\right] \begin{aligned}
& \therefore\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=-3 E I\left[\begin{array}{ll}
1000 & 2500 \\
2500 & 8000
\end{array}\right]^{-1}\left[\begin{array}{l}
-9500 / E I \\
-25750 / E I
\end{array}\right]=\left[\begin{array}{c}
19.93 \\
3.43
\end{array}\right]
\end{aligned}
$$

$[\Delta]=0$ Net displacements zero
ie $P_{1}=R_{b}=19.93 \mathrm{kN}$ \& $P_{2}=R_{c}=3.43 \mathrm{kN}$.
Draw B.M. \& S.F. Diagram.
(2) If supports $B \& C$ sinks down by units $\frac{2 D O}{E I} \& \frac{I D D}{E I}$ units analyse the bears.

In this, set displacessents, at (1) $\Delta_{1}=-\frac{200}{E I} \&$ at (2) $\Delta_{2}=-\frac{100}{E I}$

Compatibility Eqn is modified as -

$$
\begin{aligned}
{\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right] } & =\frac{1}{3 E I}\left[\begin{array}{cc}
1000 & 2500 \\
2500 & 8000
\end{array}\right]_{-1}^{-1}\left\{\left[\begin{array}{cc}
-\frac{200}{E I} \\
-\frac{100}{E I}
\end{array}\right]-\left[\begin{array}{c}
-\frac{9500}{E I} \\
-\frac{25750}{E I}
\end{array}\right]\right\} \\
& =3 E I\left[\begin{array}{ll}
1000 & 2500 \\
2500 & 8000
\end{array}\right]\left[\begin{array}{c}
\frac{9300}{E I} \\
\frac{25650}{E I}
\end{array}\right]=\left[\begin{array}{c}
17.61 \\
4.11
\end{array}\right] \\
\therefore \quad P_{1} & =R_{b}=17.61 \mathrm{kN} \& P_{2}=R_{c}=4.11 \mathrm{kN} .
\end{aligned}
$$

(3) Choose the support mossiest Ma, Mb as the redundants.
 ie basic deterssinate structure will be two simply supported beams:

$$
\begin{aligned}
& \Delta_{1 L}=\frac{W L^{2}}{16 E I}=\frac{24 \times 10^{2}}{16 E I}=\frac{150}{E I} \\
& \Delta_{2 L}=\frac{24 \times 10^{2}}{16 E I}+\frac{12 \times 10^{2}}{16 E I}=\frac{225}{E I} \\
& \delta_{11}=\frac{L}{3 E I}=\frac{10}{3 E I} \quad \delta_{21}=\frac{L}{6 E I}=\frac{10}{6 E I}=\frac{5}{3 E I}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{12} & =\frac{L}{6 E I}=\frac{5}{3 E I}=\delta_{21} \\
\delta_{22} & =\left(\frac{L}{3 E I}\right)_{A B}+\left(\frac{L}{3 E I}\right)_{B C} \quad \therefore[\delta]=\left[\begin{array}{ll}
\frac{10}{3 E I} & \frac{5}{3 E I} \\
& =\frac{10}{3 E I}+\frac{10}{3 E I} \\
& =\frac{20}{3 E I}
\end{array}\right]
\end{aligned}
$$

Using $-[P]=[\delta]^{-1}\left\{[\Delta]-\left[\Delta_{L}\right]\right\} \quad[\Delta]=0$
(Both Ma \& Mb were assumed sagging)
(4) If sinking of supports $B \& C$, which are $\frac{20 D}{E I} \& \frac{10 D}{E I}$, are considered:

Due to Loading

$$
\begin{aligned}
\Delta_{I L} & =\frac{24 \times 10^{2}}{16 E I}+\frac{200}{E I} \times \frac{1}{10} \\
& =\frac{170}{E I}
\end{aligned}
$$

Due to sinking $\begin{aligned} &=\frac{195}{E I} \\ & \text { Considering net displ. }\{\Delta]=0\end{aligned}$

$$
\Delta_{2 L}=\frac{24 \times 10^{2}}{16 E I}+\frac{12 \times 10^{2}}{16 E I}-\frac{200}{E I} \times \frac{1}{10}-\left(\frac{200}{E I}-\frac{100}{E I}\right) \times \frac{1}{10}
$$

$$
=\frac{195}{E I}
$$

$$
\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=-\left[\begin{array}{ll}
\frac{10}{3 E I} & \frac{5}{3 E I} \\
\frac{5}{3 E I} & \frac{20}{3 E I}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{170}{E I} \\
\frac{195}{E I}
\end{array}\right]=\left[\begin{array}{l}
-41.57 \\
-18.86
\end{array}\right]
$$

ie $P_{1}=M_{a}=-41.57$ (hogging), $P_{2}=M b=-18.86$ (hogging)

$$
\begin{aligned}
& \therefore\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=-\left[\begin{array}{ll}
\frac{10}{3 E I} & \frac{5}{3 E I} \\
\frac{5}{3 E I} & \frac{20}{3 E I}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{150}{E I} \\
\frac{225}{E I}
\end{array}\right]=\left[\begin{array}{l}
-32.10 \\
-25.70
\end{array}\right] \\
& \therefore \quad P_{1}=M_{a}=-32.10 \mathrm{kNm} \\
& \therefore M_{a}=32 \cdot 10 \mathrm{kNm} \text { (hogging) } \\
& P_{2}=M b=-25.70 \text { " } \\
& \therefore \quad M b=25.70
\end{aligned}
$$

LECTURE No . 8
Example:

Since $M b \& M c$
are redundants,
Basic deterssinate str, $A B, B C$, $\& C D-$ simply
 supported beams

$$
\theta_{a}=\theta_{b}=\frac{\omega l^{3}}{24 E I} \quad \theta_{b}=\frac{P a b(2 t-a)}{6 E I L} \quad \theta_{c}=\frac{P a\left(L^{2}-a^{2}\right)}{6 E I L} \quad \theta_{c}=\theta_{d}=\frac{\omega l^{3}}{24 E I}
$$

$\Delta_{1 L}=$ Displ. at co-ord. (1) due to applied loads for determinate str

$$
=(\theta b)_{A B}+(O b)_{B C}=\frac{4 \times 12^{3}}{24 E I}+\frac{12 \times 4 \times 8(2 \times 72-4)}{6 E I \times 12}=\frac{1184}{3 E I}
$$

$\Delta_{2 L}=$ Displ. at cD-ord.(2) due to applied loads for determinate str.

$$
=\left(\theta_{C}\right)_{B C}+\left(\theta_{C}\right)_{C D}=\frac{12 \times 4\left(12^{2}-4^{2}\right)}{6 E I \times 12}+\frac{2 \times 12^{3}}{24 E I}=\frac{688}{3 E I}
$$

Using compatibility condition,

$$
\begin{aligned}
& {[P]=[\delta]^{-1}\left\{[\Delta]-\left\{\Delta_{2}\right]\right\} \text { Net displ. }[\Delta]=0 } \\
\therefore & {\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=-\left[\begin{array}{ll}
\frac{8}{E I} & \frac{2}{E I} \\
\frac{2}{E I} & \frac{8}{E I}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{1184}{3 E I} \\
\frac{688}{3 E I}
\end{array}\right]=\left[\begin{array}{l}
-45.0 \\
-17.4
\end{array}\right] }
\end{aligned}
$$

ie $P_{1}=M_{b}=-45.0 \mathrm{kNm}$ (hogging)

$$
P_{2}=M_{c}=-17.4 \mathrm{kNm} \text { (hogging) }
$$

Draw B.M. \& S.F. Diagrams.
The problem may also be solved by taking $R b \& R c$ redundant.

Example:

$D_{s}=3$ Introduce hinges at $B, C, \& D$ ie Mb, Mc, Md redundants.

Flexibilty matrix:

$$
\begin{aligned}
& \delta_{11}=\frac{1 \times 1 \times 3}{E I}+\frac{1 \times 1 \times 5}{3 \times 3 E I}+0=\frac{3.56}{E I} \\
& (\mathrm{AB}) \\
& \delta_{22}=\frac{-0.75 \times(-0.75) \times 3}{3 E I}+\frac{1 \times 1 \times 5}{3 \times 3 E I}+\frac{1 \times 1 \times 4}{3 \times 2 E I}=\frac{1.785}{E I} \\
& \delta_{33}=\frac{0.75 \times 0.75 \times 3}{3 E I}+0+\frac{1 \times 1 \times 4}{3 \times 2)}=\frac{1.223}{E I} \\
& \delta_{12}=\delta_{21}=\frac{-0.75 \times 1 \times 3}{2 \times E I}+\frac{1 \times 1 \times 5}{6 \times 3 E I}+0=-\frac{0.847}{E I} \\
& \delta_{23}=\delta_{32}=\frac{-0.75 \times 0.75 \times 3}{3 \times E I}+0+\frac{1 \times 1 \times 4}{6 \times 2 E I}=-\frac{0.23}{E I} \\
& \delta_{31}=\delta_{13}=\frac{1 \times 0.75 \times 3}{2 \times E I}+0+0=\frac{1}{E I}\left[\begin{array}{l}
3.56-0.8471 .125 \\
-0.8471 .785-0.25 \\
1.125-0.231 .22
\end{array}\right] \\
& \hline 1.125
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{I L} & =\frac{1 \times(-90) \times 3}{3 \times E I}+\frac{1 \times 60 \times 3}{2 \times E I}+\frac{1 \times 62.5(5+2.5)}{6 \times 3 E I}+0 \\
& =26.04 / E I \\
\Delta_{2 L} & =\frac{-0.75(-90) \times 3}{4 \times E I}+\frac{-0.75 \times 60 \times 3}{3 \times E I}+\frac{1 \times 62.5(5+2.5)}{6 \times 3 E I}+0 \\
& =31.67 / E I
\end{aligned}
$$

$$
\Delta_{32}=\frac{0.75(-90) \times 3}{4 \times E I}+\frac{0.75 \times 60 \times 3}{3 \times E I}+0+0
$$

$$
=-5.63 / E I
$$

$\frac{h H L}{6}$

Using compatibility condition,

$$
[P]=[\delta]^{-1}\left\{[\Delta]-\left[\Delta_{2}\right]\right\} \quad[\Delta]=0
$$

$\therefore\left[\begin{array}{l}P_{1} \\ P_{2} \\ P_{3}\end{array}\right]=-E I\left[\begin{array}{rrr}3.56 & -0.847 & 1.125 \\ -0.847 & 1.785 & -0.23 \\ 1.125 & -0.23 & 1.22\end{array}\right]^{-1} \frac{1}{E I}\left[\begin{array}{c}26.04 \\ 31.67 \\ -5.63\end{array}\right]=\left[\begin{array}{l}-18.50 \\ -24.34 \\ +16.97\end{array}\right]$
$\therefore P_{1}=M_{b}=18.50$ (ten .out)
$P_{2}=M_{c}=24.34\left(\begin{array}{l}\text {-ven } \\ \left.-d_{0}-\right)\end{array}\right.$
$P_{3}=M_{d}=16.97 \underset{\text { tee }}{(\text { ten. in })}$

Example:

$$
\begin{array}{rlrl}
\delta_{11}=\int_{0}^{1} \frac{m_{1} \cdot m m_{1}}{E I} d x & =\frac{90.67}{E I} & \delta_{12}=\delta_{21} & =\int_{0}^{1} \frac{m_{1} m_{2}}{E I} d x \\
\delta_{22}=\int_{0}^{1} \frac{m_{2} \cdot m m_{2}}{E I} d x=\frac{41.67}{E I} & =\frac{50}{E I}
\end{array}
$$

using compatibility condition, $[P]^{E I}=\{\delta]^{-1}\left\{[\Delta]-\left[\Delta_{L}\right]\right\}$

$$
\begin{aligned}
& {[\Delta]=0 \quad \therefore\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=-\left[\begin{array}{cc}
90.67 / E I & 50 / E I \\
50 / E I & 41.67 / E I
\end{array}\right]^{-1}\left[\begin{array}{l}
-2133.33 / E I \\
-1433.33 / E I
\end{array}\right]=\left[\begin{array}{l}
13.50 \\
18.21
\end{array}\right]} \\
& \therefore \quad P_{1}=V_{c}=13.50 \mathrm{KN}(1) \quad P_{2}=H_{c}=18.21 \mathrm{KN}(-) \\
& M b=13.5 \times 4-40 \times 2=-26.0 \text { (hogging) } \\
& M_{a}=13.5 \times 4+18.21 \times 5-40 \times 2-50 \times 2 \\
& =-34.95 \text { (hogging) }
\end{aligned}
$$

LECTURE No. 9

$\varepsilon x-(1)$

F-E.M: $A B: \quad \overline{M a b}=-\frac{1 D \times 2 \times 1^{2}}{3^{2}}=-2.22 \mathrm{kNm}$ $M_{b a}=+\frac{10 \times 2^{2} \times 1}{3^{2}}=4.44 \mathrm{n}$
$B C$: $\overline{M b C}=-\frac{20 \times 4}{8}=^{3^{2}}-10.00 \quad 4$

$$
\begin{aligned}
& M_{C b}=+-8 \cdot-10 \cdot 00 \\
& +10 \cdot 00
\end{aligned}
$$

CD

$$
\begin{aligned}
& \overline{M c d}=-\frac{15 \times 2^{2} \times 1}{3^{2}}=-6.67 \\
& M d_{c}=+\frac{15 \times 1^{2} \times 2}{3^{2}}=3.33 \mathrm{n} .
\end{aligned}
$$

Locking forces: $P_{1}^{\prime}=4.44-10=-5.56$

$$
P_{2}^{\prime}=+10-6.67=3.33
$$

stiffress Matrix:- $[k]=\left[\begin{array}{ll}k_{11} & k_{12} \\ k_{21} & k_{22}\end{array}\right]$
first coln: unsit displ. at co-vid (1)

$$
K_{11}=\left(\frac{4 E I}{l}\right)_{A B}+\left(\frac{4 E I}{l}\right)_{B C}=\frac{4 E \times I}{3}+\frac{4 E I}{4}=2.33 E I \text {. }
$$

$$
K_{2 I}=\left(\frac{2 E I}{l}\right)_{B C}=\frac{2 E I}{4}=0.50 E I \text {. }
$$

$2^{\text {nd }}$ cotn \rightarrow ussit diapl. at $\angle D$ ourd (2)

$$
K_{12}=K_{21}=\left(\frac{2 E I}{l}\right)_{B C}=0.50 E I .
$$

$$
K_{22}=\left(\frac{4 E I}{I}\right)_{B C} \neq\left(\frac{4 E I}{1}\right)_{C D}=\frac{4 E I}{4}+\frac{4 E I}{3}=2.33 E I
$$

\therefore No Ext. Loads at the co-vid. $P_{1}=P_{2}=0$.

$$
\begin{aligned}
& {[\Delta]=\{K]^{-1}\left[\{P\}-\left\{P^{\prime}\right\}\right] \quad[P]=0 .} \\
& \therefore[\Delta]=-[K]^{-1}\left[P^{\prime}\right] .
\end{aligned}
$$

$$
\therefore\left[\begin{array}{l}
A_{1} \\
\Delta_{2}
\end{array}\right]=-\left[\begin{array}{cc}
2.33 E I & 0.5 E I \\
0.5 E I & 2.33 E I
\end{array}\right]^{-1}\left[\begin{array}{r}
-5.56 \\
3.33
\end{array}\right]=\frac{1}{E I}\left[\begin{array}{c}
2.816 \\
-2 . D 32
\end{array}\right] .
$$

$$
E I \Delta_{1}=E I \Delta b=2.816
$$

$\therefore E I \Delta_{2}=E I D_{c}=-2.032$
$\therefore \quad \mathrm{Mab}=-0.3 \mathrm{KNm} \mathrm{Mba}=8.19 \mathrm{kNm}$

$$
\begin{aligned}
& M_{a b}=-0.34 \\
& M_{b c}=-8.19 \quad M_{c b}=9.38
\end{aligned}
$$

$$
\begin{aligned}
& M_{c c}=-8.17 \\
& M c d=-9.38, \quad M d c=1.98 \quad . \quad
\end{aligned}
$$

$M_{a b}=-2.22+\frac{2 E I}{3}\left[\frac{2.816}{E I}\right]=-0.34 \mathrm{kNm}$

$$
M_{b a}=4 . L_{4}+\frac{2 E I}{3}\left[2 \times \frac{2.816}{E I}\right]=8.19 \mathrm{kNm} .
$$

Reactions:-

$$
\begin{array}{ll}
R a=0.72 \mathrm{kN} & R_{c}=22.77 \mathrm{kN} \\
R b=18.98 \mathrm{kN} & R_{d}=2.53 \mathrm{kN} .
\end{array}
$$

Supports $B \& C$ sintesdonon by $\frac{2 D D}{E I} \& \frac{10 D}{E I}$ unsits. Ex-(2) $24 \mathrm{KN} \quad 12 \mathrm{KN}$

$$
D K=2
$$

$\theta b, \Delta c$,
co-vid. (1) \& (2)

unit displ.at (1)

$$
\begin{aligned}
K_{11} & =\left(\frac{4 E I}{l}\right)_{A B}+\left(\frac{4 E I}{l}\right) B C \\
& =0.8 E I \\
K_{21} & =\left(\frac{2 E I}{l}\right)_{B C}=0.2 E I . \\
K_{12} & =K_{21}=0.2 E I \\
K_{22} & =\left(\frac{4 E I}{l}\right)=0.4 E I .
\end{aligned}
$$

F.E.Ms: Locking forces:
$F_{\delta M}^{\delta / L^{2}}=(F E M)_{\text {loading }}+(F E M)$ sinking.
A

$$
\begin{aligned}
\overrightarrow{M a b} & =-\frac{24 \times 10}{8}-\frac{6 E I}{10^{2}} \times \frac{2 D D}{E I} \\
& =-30-12=-42 \mathrm{kNm} \\
\bar{M} b a & =+30-12=+18 \\
\overline{M b c} & =-\frac{12 \times 10}{8}+\frac{6 E I}{10^{2}} \times \frac{1 \mathrm{ND}}{E I} \\
& =-15+6=-9.0 \mathrm{kNm} \\
\overline{M_{c b}} & =+15+6=21
\end{aligned}
$$

$$
\text { F.E.M. - due to sinking- } \overline{M b}_{\mathrm{Ma}}=+30-12=+18
$$

Locking firce at (1) $P_{1}^{\prime}=18-9=+9.0$
(2) $P_{2}^{\prime}=21.0 \mathrm{kNm}$.
$\therefore\left[\pm N_{0}\right.$. Est forces at $\angle D-\pi d$ (1) $\&$ (2) $\therefore P_{1}=P_{2}=0$.

$$
\begin{aligned}
& \therefore[\Delta]=-[K]^{\prime}\left[P^{\prime}\right] \\
& \therefore\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right]=-\left[\begin{array}{ll}
0.8 E I & 0.2 E I \\
0.2 E I & 0.4 E I
\end{array}\right]\left[\begin{array}{c}
9.0 \\
21.0
\end{array}\right]=\left\{\begin{array}{c}
2.143 / E I \\
-53.571 / E I
\end{array}\right] .
\end{aligned}
$$

$$
\begin{aligned}
\therefore \Delta_{1} & =\theta b=2.143 / E I . \\
\Delta_{2} & =\theta_{c}=-53.571 / E I .
\end{aligned}
$$

\therefore using slope deflection Egos-

$$
\begin{aligned}
& \left.M a b \mp M a b+\frac{2 E I}{l}(2 \theta a+\theta b)+\frac{3 \delta}{l}\right) \quad \delta=-\frac{20 D}{E I} \\
\therefore M_{a b} & =-3 D+\frac{2 E I}{1 D}\left[0+\frac{2.143}{E I}-\frac{3}{10} \times \frac{20 D}{E I} \cdot\right]=-41.6 \mathrm{kNm} \\
M b a & =+30+\frac{2 E I}{10}\left[0+2 \times \frac{2.14^{3}}{E I}-\frac{3}{10} \times \frac{20 D}{E I}\right]=18.9 \mathrm{kNm}
\end{aligned}
$$

$111^{\text {by }}$

$$
\begin{aligned}
& M_{b c}=-18.9 \mathrm{KNm} \\
& M_{c b}=0 .
\end{aligned}
$$

Reactions:- $\quad R_{a}=14.28 \mathrm{KN} \quad R b=17.61 \mathrm{KN} \quad R_{c}=4.11 \mathrm{KN}$.

LECTURE No. 10

$\therefore M_{a b}=M b a=\frac{5 \times 8^{2}}{12}=26.67$

$M_{b c}=-M_{c b}=\frac{5 D \times 6}{8}=37.22$
$\therefore P_{1}^{\prime}=26.67-26.11+37.22=38.06 \quad P_{2}^{\prime}=M d b=26.11$

\therefore vsing Egs. Essn-

$$
\begin{aligned}
& \begin{aligned}
{\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right] } & =+\left[E^{-1}\right\}\left\{[P]-\left[P^{\prime}\right]\right\} . \\
& =-\frac{1}{E I}[P]=D=\text { Netforees. } \\
& =\left[\begin{array}{ll}
1.05 & D .167 \\
D .167 & 0.33
\end{array}\right]\left[\begin{array}{l}
38.06 \\
2.6 .11
\end{array}\right]=\frac{-1}{E I}\left[\begin{array}{l}
-19.47 \\
-101.55
\end{array}\right]
\end{aligned} \\
& E I \Delta_{2}=E I D_{d}=-101.55 .
\end{aligned}
$$

$M a b=-31.54 \quad \mathrm{Mbd}=-44.53 \mathrm{Mbc}=+33.22 \quad$ Araw B.M.D.
$M_{b a}=+16.94 M_{d b}=0 \quad . M_{c b}=-39.71$

Ex-(4)

$D_{K}=3$
$\delta, \theta_{b}, \theta_{c}$ are the
8 m usknown displacements
(I) Assign $C D$-ord. (1), (2)
$\triangle(3)$ respectively as
shown.
Stiffress Matrix:

$$
K_{31}=-\left(\frac{6 E I}{L^{2}}\right) C D=-0.094 E I .
$$

$\therefore K_{12}=-\left(\frac{G E I}{L^{2}}\right)_{A B}=K_{21}=-0.167 \mathrm{EI}$. $K_{22}=\left(\frac{4 E I}{L}\right)_{A B}+\left(\frac{4 E I}{l}\right)_{B C}$
$=\frac{4 E I}{6}+\left(\frac{4 E \times 2 I}{8}\right)=1.667 E I$
$K_{32}=\left(\frac{2 E I}{l}\right){ }_{B C}=\frac{2 E \times 2 I}{8}=0.5 E I$
Usit displ. at (2)

$$
\begin{aligned}
K_{13} & =K_{31}=-0.094 E I . \\
K_{23} & =K_{32}=0.5 E I . \\
K_{33} & =\left(\frac{4 E I}{l}\right)_{B C}+\left(\frac{4 E I}{l}\right)_{C D} \\
& =\frac{4 E \times 2 I}{8}+\frac{4 E I}{8} \\
& =1.5 E I .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore K 11=\left(\frac{12 E I}{13}\right)_{A B}+\left(\frac{12 E I}{l^{3}}\right)_{C D} \\
& =\frac{12 E I}{6^{3}}+\frac{12 E T}{8^{3}} \\
& =0.08 \mathrm{EI} \text {. } \\
& K_{21}=-\left(\frac{6 E I}{L^{2}}\right)_{A B}=-0.167 E I .
\end{aligned}
$$

Locking forces - F.E.Ms. - are all zero.

$$
\therefore \quad p_{1}^{\prime}=p_{2}^{\prime}=p_{3}^{\prime}=0
$$

Ext. forces - at the $C D$-ordinates

$$
\begin{aligned}
P_{1} & =1 D D K N . \quad P_{2}=P_{3}=0 . \\
\therefore \quad[\Delta] & =\{K\}\left\{[P]-\left[P^{\prime}\right\}\right\} . \\
\therefore\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2} \\
\Delta_{3}
\end{array}\right] & =\frac{1}{E I}\left[\begin{array}{ccc}
0.08 & -0.167 & -0.094 \\
-0.167 & 1.667 & 0.5 \\
-0.094 & 0.5 & 1.5
\end{array}\right]\left\{\left[\begin{array}{c}
100 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} \\
& =\frac{1}{E I}\left[\begin{array}{ccc}
16.17 & 1.46 & 0.526 \\
1.46 & 0.80 & -0.175 \\
0.526 & -0.175 & 0.758
\end{array}\right]\left[\begin{array}{c}
100 \\
0 \\
0
\end{array}\right]=\frac{1}{E I}\left[\begin{array}{c}
1617 \\
146 \\
52.6
\end{array}\right] \\
\therefore E I \Delta_{1} & =E I \delta=1617 \\
E I \Delta_{2} & =E I \theta_{b}=146 \\
E I \Delta_{3} & =E I \theta_{c}=52.6
\end{aligned}
$$

From slope deflections Egos : -

$$
\begin{array}{ll}
M a b=-220.83 \mathrm{kNm} & M b a=-172.17 \mathrm{kNm} \\
M b c=+172.3 \mathrm{kNm} & M c b=+125.6 \mathrm{kNm} . \\
M c d=-125.3 \mathrm{MN} & M d_{c}=-138.44 \mathrm{~s} .
\end{array}
$$

B.M. Diagram.

